Aridity and grazing as convergent selective forces an experiment with an Arid Chaco bunchgrass

It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, a...

Descripción completa

Detalles Bibliográficos
Otros Autores: Quiroga, Raúl Emiliano, Golluscio, Rodolfo Angel, Blanco, Lisandro Javier, Fernández, Roberto Javier
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2010Quiroga.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09555cab a22018617a 4500
001 AR-BaUFA000073
003 AR-BaUFA
005 20230816100025.0
008 181208t2010 |||||o|||||00||||eng d
999 |c 46507  |d 46507 
022 |a 1051-0761 
024 |a 10.1890/09-0641.1 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Aridity and grazing as convergent selective forces   |b an experiment with an Arid Chaco bunchgrass 
520 |a It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history [semiarid/subhumid X heavily grazed/lightly grazed], established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot : root ratio and a higher resource allocation to reserves [starch] in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller [and with more erect tillers] than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure history environments for selecting drought-resistant ones. 
653 0 |a ARGENTINEAN ARID CHACO REGION 
653 0 |a AVOIDANCE 
653 0 |a COMMON GARDEN 
653 0 |a CONVERGENCE 
653 0 |a DEFOLIATION 
653 0 |a DROUGHT 
653 0 |a EVOLUTION 
653 0 |a NATURAL SELECTION 
653 0 |a RESISTANCE 
653 0 |a TOLERANCE 
653 0 |a TRICHLORIS CRINITA 
653 0 |a WATER 
653 0 |a ADAPTATION 
653 0 |a ARID REGION 
653 0 |a ARIDITY 
653 0 |a DIGESTIBILITY 
653 0 |a DROUGHT RESISTANCE 
653 0 |a FORAGE 
653 0 |a GENOTYPE 
653 0 |a GRASS 
653 0 |a GRAZING 
653 0 |a GROWING SEASON 
653 0 |a HERBIVORY 
653 0 |a NATIVE SPECIES 
653 0 |a NATURAL SELECTION 
653 0 |a RESOURCE ALLOCATION 
653 0 |a SEED 
653 0 |a SEMIARID REGION 
653 0 |a SEXUAL REPRODUCTION 
653 0 |a SOIL TEMPERATURE 
653 0 |a SOLAR RADIATION 
653 0 |a ANIMAL 
653 0 |a CATTLE 
653 0 |a DROUGHT 
653 0 |a FEEDING BEHAVIOR 
653 0 |a GENETIC SELECTION 
653 0 |a PHYSIOLOGY 
653 0 |a POACEAE 
653 0 |a ANIMALS 
653 0 |a DROUGHTS 
653 0 |a SELECTION, GENETIC 
653 0 |a ATER 
653 0 |a ARGENTINA 
653 0 |a CHACO [ARGENTINA] 
653 0 |a TRICHLORIS CRINITA 
700 1 |9 30497  |a Quiroga, Raúl Emiliano 
700 1 |9 729  |a Golluscio, Rodolfo Angel 
700 1 |9 14327  |a Blanco, Lisandro Javier 
700 1 |9 6385  |a Fernández, Roberto Javier 
773 |t Ecological Applications  |g Vol.20, no.7 (2010), p.1876-1889 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2010Quiroga.pdf  |i En reservorio  |q application/pdf  |f 2010Quiroga  |x MIGRADOS2018 
856 |u http://www.esapubs.org/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 10510761 
900 |a 10.1890/09-0641.1 
900 |a ^tAridity and grazing as convergent selective forces^san experiment with an Arid Chaco bunchgrass 
900 |a ^aQuiroga^bR.E. 
900 |a ^aGolluscio^bR.A. 
900 |a ^aBlanco^bL.J. 
900 |a ^aFernández^bR.J. 
900 |a ^aQuiroga^bR. E. 
900 |a ^aGolluscio^bR. A. 
900 |a ^aBlanco^bL. J. 
900 |a ^aFernández^bR. J. 
900 |a ^aQuiroga, R.E.^tEstación Experimental Agropecuaria la Rioja, Instituto Nacional de Tecnología Agropecuaria [INTA], CC26, Chamical, La Rioja 5380, Argentina 
900 |a ^aGolluscio, R.A.^tIFEVA, CONICET-Cátedra de Forrajicultura, Universidad de Buenos Aires, Avenida San Martín 4453, Buenos Aires 1417, Argentina 
900 |a ^aBlanco, L.J.^tIFEVA, CONICET-Cátedra de Ecología, Universidad de Buenos Aires, Avenida San Martín 4453, Buenos Aires 1417, Argentina 
900 |a ^aFernández, R.J.^tEEA Catamarca, INTA, Ruta Provincial No. 33, Km 4, Sumalao, Valle Viejo, Catamarca 4705, Argentina 
900 |a ^tEcological Applications^cEcol. Appl. 
900 |a en 
900 |a 1876 
900 |a ^i 
900 |a Vol. 20, no. 7 
900 |a 1889 
900 |a ARGENTINEAN ARID CHACO REGION 
900 |a AVOIDANCE 
900 |a COMMON GARDEN 
900 |a CONVERGENCE 
900 |a DEFOLIATION 
900 |a DROUGHT 
900 |a EVOLUTION 
900 |a NATURAL SELECTION 
900 |a RESISTANCE 
900 |a TOLERANCE 
900 |a TRICHLORIS CRINITA 
900 |a WATER 
900 |a ADAPTATION 
900 |a ARID REGION 
900 |a ARIDITY 
900 |a DIGESTIBILITY 
900 |a DROUGHT RESISTANCE 
900 |a FORAGE 
900 |a GENOTYPE 
900 |a GRASS 
900 |a GRAZING 
900 |a GROWING SEASON 
900 |a HERBIVORY 
900 |a NATIVE SPECIES 
900 |a NATURAL SELECTION 
900 |a RESOURCE ALLOCATION 
900 |a SEED 
900 |a SEMIARID REGION 
900 |a SEXUAL REPRODUCTION 
900 |a SOIL TEMPERATURE 
900 |a SOLAR RADIATION 
900 |a ANIMAL 
900 |a CATTLE 
900 |a DROUGHT 
900 |a FEEDING BEHAVIOR 
900 |a GENETIC SELECTION 
900 |a PHYSIOLOGY 
900 |a POACEAE 
900 |a ANIMALS 
900 |a DROUGHTS 
900 |a SELECTION, GENETIC 
900 |a ATER 
900 |a ARGENTINA 
900 |a CHACO [ARGENTINA] 
900 |a TRICHLORIS CRINITA 
900 |a It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history [semiarid/subhumid X heavily grazed/lightly grazed], established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot : root ratio and a higher resource allocation to reserves [starch] in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller [and with more erect tillers] than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure history environments for selecting drought-resistant ones. 
900 |a 20 
900 |a 7 
900 |a 2010 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2010Quiroga 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2010Quiroga.pdf 
900 |a 2010Quiroga.pdf 
900 |a http://www.esapubs.org/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-77957745950&partnerID=40&md5=227ae92f6513b9af0c650bc6c075de5a 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc