Overview of anticoagulant activity of sulfated polysaccharides from seaweeds in relation to their structures, focusing on those of green seaweeds

The anticoagulant behavior of sulfated polysaccharides from seaweeds is reviewed based on their chemical structures. Analysis of the literature suggested that the driving force for the formation of the sulfated polysaccharide/ protein complex is the non-specific polar interaction between the negativ...

Descripción completa

Detalles Bibliográficos
Autor principal: Ciancia, Marina
Otros Autores: Quintana, Irene, Cerezo, A. S.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2010Ciancia.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08799cab a22016457a 4500
001 AR-BaUFA000049
003 AR-BaUFA
005 20230817135908.0
008 181208t2010 |||||o|||||00||||eng d
999 |c 46483  |d 46483 
022 |a 0929-8673 
024 |a 10.2174/092986710791556069 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |9 46099  |a Ciancia, Marina 
245 0 0 |a Overview of anticoagulant activity of sulfated polysaccharides from seaweeds in relation to their structures, focusing on those of green seaweeds 
520 |a The anticoagulant behavior of sulfated polysaccharides from seaweeds is reviewed based on their chemical structures. Analysis of the literature suggested that the driving force for the formation of the sulfated polysaccharide/ protein complex is the non-specific polar interaction between the negatively and positively charged groups in the polysaccharide and protein, respectively and that the complex is further stabilized by short-range interactions. The polysaccharide binding site should be able to go through the following conformational steps in the formation of the complex: random coil -'ordered conformation'- low distortion of this conformation to form a complementary fitting structure with the protein backbone. The sulfated monosaccharide units with the highest potential for anticoagulant activity should have two sulfate groups and a glycosidic linkage on the pyranose ring with C-2, C-3 and C-4 in 2S, 3R, 4R or 2R, 3S, 4S configurations for galactose, fucose and arabinose and 2S, 3S, 4R, for rhamnose. Three distributions of these substituents appear: 3-linked 2,4-disulfated units, 4-linked 2,3-disulfated units and 2-linked 3,4-disulfated residues. These types of units have the possibility, through the equilibrium of the chair conformations, to place their sulfate groups in adequate spacial positions to interact with basic groups of the protein. The anticoagulant activity is mainly attributed to thrombin inhibition mediated by antithrombin and/or heparin cofactor II, with different effectivenesses depending of the compound. Other mechanisms are also proposed and these differences could be attributed to the diversity of structures of the polysaccharides evaluated and to the fact that one compound may have more than one target protease. 
653 0 |a ANTICOAGULANT ACTIVITY 
653 0 |a CHEMICAL STRUCTURE 
653 0 |a DISULFATED STRUCTURAL UNITS 
653 0 |a GREEN SEAWEED 
653 0 |a STRUCTURE-ACTIVITY RELATIONSHIP 
653 0 |a SULFATED POLYSACCHARIDES 
653 0 |a ANTITHROMBIN 
653 0 |a ARABINOSE 
653 0 |a CARBOHYDRATE 
653 0 |a FUCOSE 
653 0 |a GALACTOSE 
653 0 |a GLYCOSAMINOGLYCAN 
653 0 |a HEPARIN COFACTOR II 
653 0 |a MONOSACCHARIDE 
653 0 |a POLYSACCHARIDE 
653 0 |a RHAMNOSE 
653 0 |a SULFATE 
653 0 |a THROMBIN 
653 0 |a ANTICOAGULANT THERAPY 
653 0 |a DRUG ACTIVITY 
653 0 |a DRUG BINDING 
653 0 |a DRUG CONFORMATION 
653 0 |a DRUG INHIBITION 
653 0 |a DRUG MECHANISM 
653 0 |a DRUG STRUCTURE 
653 0 |a HUMAN 
653 0 |a HYDROPHOBICITY 
653 0 |a NONHUMAN 
653 0 |a SEAWEED 
653 0 |a STRUCTURE ACTIVITY RELATION 
653 0 |a ANIMALS 
653 0 |a ANTICOAGULANTS 
653 0 |a BLOOD COAGULATION 
653 0 |a HUMANS 
653 0 |a MOLECULAR STRUCTURE 
653 0 |a POLYSACCHARIDES 
653 0 |a SEAWEED 
653 0 |a SULFATES 
700 1 |9 67122  |a Quintana, Irene 
700 1 |a Cerezo, A. S.  |9 69393 
773 |t Current Medicinal Chemistry  |g Vol. 17, no. 23 (2010) 2503-2529 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2010Ciancia.pdf  |i En reservorio  |q application/pdf  |f 2010Ciancia  |x MIGRADOS2018 
856 |u http://www.benthamscience.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 09298673 
900 |a 10.2174/092986710791556069 
900 |a ^tOverview of anticoagulant activity of sulfated polysaccharides from seaweeds in relation to their structures, focusing on those of green seaweeds 
900 |a ^aCiancia^bM. 
900 |a ^aQuintana^bI. 
900 |a ^aCerezo^bA.S. 
900 |a ^aCiancia^bM. 
900 |a ^aQuintana^bI. 
900 |a ^aCerezo^bA. S. 
900 |a ^aCiancia, M.^tCátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417 Buenos Aires, Argentina 
900 |a ^aQuintana, I.^tCIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina 
900 |a ^aCerezo, A.S.^tLaboratorio de Hemostasia y Trombosis, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina 
900 |a ^tCurrent Medicinal Chemistry^cCurr. Med. Chem. 
900 |a en 
900 |a 2503 
900 |a ^i 
900 |a Vol. 17, no. 23 
900 |a 2529 
900 |a ANTICOAGULANT ACTIVITY 
900 |a CHEMICAL STRUCTURE 
900 |a DISULFATED STRUCTURAL UNITS 
900 |a GREEN SEAWEED 
900 |a STRUCTURE-ACTIVITY RELATIONSHIP 
900 |a SULFATED POLYSACCHARIDES 
900 |a ANTITHROMBIN 
900 |a ARABINOSE 
900 |a CARBOHYDRATE 
900 |a FUCOSE 
900 |a GALACTOSE 
900 |a GLYCOSAMINOGLYCAN 
900 |a HEPARIN COFACTOR II 
900 |a MONOSACCHARIDE 
900 |a POLYSACCHARIDE 
900 |a RHAMNOSE 
900 |a SULFATE 
900 |a THROMBIN 
900 |a ANTICOAGULANT THERAPY 
900 |a DRUG ACTIVITY 
900 |a DRUG BINDING 
900 |a DRUG CONFORMATION 
900 |a DRUG INHIBITION 
900 |a DRUG MECHANISM 
900 |a DRUG STRUCTURE 
900 |a HUMAN 
900 |a HYDROPHOBICITY 
900 |a NONHUMAN 
900 |a SEAWEED 
900 |a STRUCTURE ACTIVITY RELATION 
900 |a ANIMALS 
900 |a ANTICOAGULANTS 
900 |a BLOOD COAGULATION 
900 |a HUMANS 
900 |a MOLECULAR STRUCTURE 
900 |a POLYSACCHARIDES 
900 |a SEAWEED 
900 |a SULFATES 
900 |a The anticoagulant behavior of sulfated polysaccharides from seaweeds is reviewed based on their chemical structures. Analysis of the literature suggested that the driving force for the formation of the sulfated polysaccharide/ protein complex is the non-specific polar interaction between the negatively and positively charged groups in the polysaccharide and protein, respectively and that the complex is further stabilized by short-range interactions. The polysaccharide binding site should be able to go through the following conformational steps in the formation of the complex: random coil -'ordered conformation'- low distortion of this conformation to form a complementary fitting structure with the protein backbone. The sulfated monosaccharide units with the highest potential for anticoagulant activity should have two sulfate groups and a glycosidic linkage on the pyranose ring with C-2, C-3 and C-4 in 2S, 3R, 4R or 2R, 3S, 4S configurations for galactose, fucose and arabinose and 2S, 3S, 4R, for rhamnose. Three distributions of these substituents appear: 3-linked 2,4-disulfated units, 4-linked 2,3-disulfated units and 2-linked 3,4-disulfated residues. These types of units have the possibility, through the equilibrium of the chair conformations, to place their sulfate groups in adequate spacial positions to interact with basic groups of the protein. The anticoagulant activity is mainly attributed to thrombin inhibition mediated by antithrombin and/or heparin cofactor II, with different effectivenesses depending of the compound. Other mechanisms are also proposed and these differences could be attributed to the diversity of structures of the polysaccharides evaluated and to the fact that one compound may have more than one target protease. 
900 |a 17 
900 |a 23 
900 |a 2010 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2010Ciancia 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2010Ciancia.pdf 
900 |a 2010Ciancia.pdf 
900 |a http://www.benthamscience.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-77955602234&partnerID=40&md5=b5f0b225473ecee87198e8ef9904e473 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc