Complex trait ‒ environment relationships underlie the structure of forest plant communities

1. Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evalua...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rolhauser, Andrés Guillermo
Otros Autores: Waller, Donald M., Tucker, Caroline M.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2021rolhauser1.pdf
Material complementario
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05021cab a22004217a 4500
001 20220926140853.0
003 AR-BaUFA
005 20230405100337.0
008 220926t2021 xxkd||||o|||| 00| 0 eng d
999 |c 54996  |d 54996 
999 |d 54996 
999 |d 54996 
999 |d 54996 
999 |d 54996 
999 |d 54996 
022 |a 0022-0477 
024 |a 10.1111/1365-2745.13757 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |9 12512  |a Rolhauser, Andrés Guillermo  |u University of North Carolina at Chapel Hill. Department of Biology. Chapel Hill, NC, USA.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
245 0 0 |a Complex trait ‒ environment relationships underlie the structure of forest plant communities 
520 |a 1. Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community-scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community-weighted mean (CWM) traits observed along environmental gradients. Regression-based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA). 2. We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches. 3. The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM. 4. Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating usefulinsights and supporting broader application of GLMM approach to understand trait‒environment relationships. 
653 |a CLIMATE SEASONALITY 
653 |a COMMUNITY ASSEMBLY 
653 |a FUNCTIONAL TRAIT ANALYSIS 
653 |a GENERALIZED LINEAR MIXED MODEL 
653 |a LEAF TRAITS 
653 |a MEAN ANNUAL TEMPERATURE 
653 |a PLANT HEIGHT 
653 |a SOIL TEXTURE 
700 1 |a Waller, Donald M.  |u University of Wisconsin - Madison. Department of Botany. Madison, WI, USA.  |9 74069 
700 1 |a Tucker, Caroline M.  |u University of North Carolina at Chapel Hill. Department of Biology. Chapel Hill, NC, USA.  |u University of North Carolina at Chapel Hill. Environment, Ecology and Energy Program. Chapel Hill, NC, USA.  |9 74070 
773 0 |t Journal of ecology  |w (AR-BaUFA)SECS000112  |g Vol.109, no.11 (2021), p.3794–3806, grafs. 
856 |f 2021rolhauser1  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021rolhauser1.pdf  |x ARTI202210 
856 |z Material complementario  |f 2021rolhauser1-c1  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021rolhauser1-c1.pdf 
856 |u http://www.journalofecology.org/  |z LINK AL EDITOR 
942 |c ARTICULO  |n 1 
942 |c ENLINEA 
976 |a AAG