Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia

Photodegradation of aboveground senescent plant material (plant litter) due to exposure to solar radiation has been identified as a dominant control on carbon (C) loss in semi-arid ecosystems [1], upturning traditional models of C cycling based only on available moisture and litter quality. In addit...

Descripción completa

Detalles Bibliográficos
Otros Autores: Berenstecher, Paula, Vivanco, Lucía, Pérez, Luis Ignacio, Ballaré, Carlos Luis, Austin, Amy Theresa
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2020berenstecher.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04953cab a22003977a 4500
001 20211111162420.0
003 AR-BaUFA
005 20220914110254.0
008 211111t2020 ne do||| |||| 00| 0 eng d
999 |c 54368  |d 54368 
999 |d 54368 
999 |d 54368 
999 |d 54368 
022 |a 0960-9822 
024 |a 10.1016/j.cub.2020.06.005 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia 
520 |a Photodegradation of aboveground senescent plant material (plant litter) due to exposure to solar radiation has been identified as a dominant control on carbon (C) loss in semi-arid ecosystems [1], upturning traditional models of C cycling based only on available moisture and litter quality. In addition to the photochemical mineralization of organic matter [1, 2], sunlight alters the chemistry of cell walls in plant litter [3, 4], making them more susceptible to subsequent biotic degradation [5–7]. Nevertheless, the interactive effects of sunlight exposure,climate seasonality, and biotic decomposition on C turnover remain unresolved in terrestrial ecosystems. We show here that exposure to sunlight accelerated litter decomposition in a Patagonian woodland with a marked dry summer season. Controls on initial decomposition varied seasonally from direct photochemical mineralization in the dry summer to biotic degradation in the wet winter. By manipulating sunlight received by plant litter using spectral filters that attenuated ultraviolet and short-wave visible light, we demonstrate that direct photodegradation and its legacy, associated with increased microbial access to labile carbohydrates, are responsible for the acceleration of aboveground C turnover in this Mediterranean-type climate. Across plant species and over a 2-year period, litter exposed to the full solar spectrum decomposed twice as fast as litter that received attenuated sunlight. Changes in vegetation cover or biodiversity due to projected increased drought and dry season length [8] will likely exacerbate C losses from aboveground litter due to sunlight exposure, negatively impacting the C balance in ecosystems that are particularly vulnerable to global change. 
650 |2 Agrovoc  |9 26 
653 |a CLIMATE CHANGE 
653 |a CARBON LOSS 
653 |a PLANT LITTER 
653 |a SOLAR RADIATION 
653 |a DEGRADATION 
653 |a PATAGONIA 
700 1 |a Berenstecher, Paula  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 35548 
700 1 |9 30802  |a Vivanco, Lucía  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 36644  |a Pérez, Luis Ignacio  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 672  |a Ballaré, Carlos Luis  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad Nacional de San Martín. IIBio-INTECH.Buenos Aires, Argentina.  |u CONICET - Universidad Nacional de San Martín. IIBio-INTECH.Buenos Aires, Argentina. 
700 1 |9 48259  |a Austin, Amy Theresa  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
773 0 |t Current biology  |g Vol.30, no.16 (2020), p.3243-3251, grafs., fot.  |w SECS000508 
856 |f 2020berenstecher  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2020berenstecher.pdf  |x ARTI202111 
856 |u https://www.cell.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG