Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals

Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Ruiz, J. A., Almeida, A. de, Godoy, M. S., Mezzina, M. P., Bidart, Gonzalo N., Méndez, B. S., Pettinari, M. J., Nikel, P. I.
Formato: Artículo
Lenguaje:Español
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2012ruiz.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03057cab a22004217a 4500
001 AR-BaUFA000750
003 AR-BaUFA
005 20210729140119.0
008 181208t2012 |||||o|||||00||||spa d
999 |c 47146  |d 47146 
999 |d 47146 
022 |a 2001-0370 
024 |a 10.5936/csbj.201210019 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals 
520 |a Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly[3-hydroxybutyrate], under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway[s] at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level. 
650 |2 Agrovoc  |9 26 
653 0 |a ARCBA 
653 0 |a CREBC 
653 0 |a ESCHERICHIA COLI 
653 0 |a METABOLIC FLUX ANALYSIS 
653 0 |a POLYHYDROXYALKANOATES 
653 0 |a REDOX HOMEOSTASIS 
653 0 |a REDUCED BIOCHEMICALS 
700 1 |a Ruiz, J. A.  |9 69403 
700 1 |a Almeida, A. de  |9 69404 
700 1 |a Godoy, M. S.  |9 69405 
700 1 |a Mezzina, M. P.  |9 69406 
700 1 |a Bidart, Gonzalo N.  |9 69407 
700 1 |a Méndez, B. S.  |9 69408 
700 1 |a Pettinari, M. J.  |9 69409 
700 1 |a Nikel, P. I.  |9 69410 
773 |t Computational and Structural Biotechnology Journal  |g vol.3, no.4 (2012), p.1-10 
856 |u http://ri.agro.uba.ar/files/download/articulo/2012ruiz.pdf  |q application/pdf  |f 2012ruiz  |x MIGRADOS2018 
856 |u http://csbj.org/  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG