Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia

The main objective of an ecosystem sustainable management is to preserve its capacity to respond and adapt to current disturbances and/or future changes, and maintain the provision of environmental goods and services. Two very important properties linked to this objective are the ecosystem resilienc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: López, Dardo Rubén, Brizuela, Miguel Angel, Willems, Priscila Mabel, Aguiar, Martín Roberto, Siffredi, Guillermo L., Bran, Donaldo Eduardo
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2013lopez.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12679cab a22025457a 4500
001 AR-BaUFA000562
003 AR-BaUFA
005 20220926163449.0
008 181208t2013 |||||o|||||00||||eng d
999 |c 46996  |d 46996 
022 |a 1470-160X 
024 |a 10.1016/j.ecolind.2012.05.014 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia 
520 |a The main objective of an ecosystem sustainable management is to preserve its capacity to respond and adapt to current disturbances and/or future changes, and maintain the provision of environmental goods and services. Two very important properties linked to this objective are the ecosystem resilience and resistance to disturbance factors. The Structural-Functional State and Transition Model [SFSTM] is a conceptual framework that allows evaluating the ecosystem resilience and resistance based on structural and functional attributes. On the other hand, the Landscape Functional Analysis [LFA] presents a method to assess the rangeland "health" based on structural vegetation and soil indicators, creating indexes to evaluate the ecosystem functional integrity. The aim of this study is to integrate LFA and SFSTM as an approach to help validate indicators and indexes associated with the resistance, resilience, and stability of a temperate rangeland ecosystem. States and transitions model for a shrubby-grasses steppe of the Western Patagonian District was used as a reference system. Changes in vegetation structure, soil surface, and loss of soil due to erosion were determined in sites with different grazing histories. Based on the SFSTM, we assessed the relationships between ecosystem structural changes with the recruitment process of the plant community and ecosystem integrity indexes [sensu LFA]. Our results indicate that the decrease in the recruitment process, related to different grazing histories, was associated with a loss of ecosystem functional integrity. This was associated to a decrease in the ability to retain, store, and use rain water, and also in nutrient cycling. This suggests that the integration of the LFA methodology to the SFSTM can be used for indexes validation, which in turn allows the identification of critical thresholds associated with ecosystem resilience loss. Finally, throughout the integration of indicators of LFA into SFSTM, we established relationships between ecosystem resistance, resilience, and stability in response to a disturbance factor [e.g. overgrazing]. Thus, we used this information to define states in stable, unstable, mixed-unstable, and indifferent-stable dynamic equilibriums. Our proposed approach provides a tool for ecosystem assessment regarding the identification of states that can be restored and those that might be more susceptible to degradation. Such information might help in the prevention of crossing a critical threshold and be used for sustainable management programs in rangelands. 
653 0 |a EQUILIBRIUM 
653 0 |a INSTABILITY 
653 0 |a INTEGRITY INDEX 
653 0 |a STATE AND TRANSITION 
653 0 |a STRUCTURAL-FUNCTIONAL 
653 0 |a THRESHOLD 
653 0 |a CRITICAL THRESHOLD 
653 0 |a DISTURBANCE FACTORS 
653 0 |a DYNAMIC EQUILIBRIUM 
653 0 |a ECOSYSTEM RESILIENCE 
653 0 |a FUNCTIONAL ATTRIBUTE 
653 0 |a NUTRIENT CYCLING 
653 0 |a PLANT COMMUNITIES 
653 0 |a RAIN WATER 
653 0 |a RANGELAND ECOSYSTEM 
653 0 |a RECRUITMENT PROCESS 
653 0 |a REFERENCE SYSTEMS 
653 0 |a SOIL INDICATOR 
653 0 |a SOIL SURFACES 
653 0 |a STATE-AND-TRANSITION MODELS 
653 0 |a STATES AND TRANSITIONS 
653 0 |a STRUCTURAL CHANGE 
653 0 |a SUSTAINABLE MANAGEMENT 
653 0 |a VEGETATION STRUCTURE 
653 0 |a PHASE EQUILIBRIA 
653 0 |a PLASMA STABILITY 
653 0 |a SOILS 
653 0 |a STABILITY 
653 0 |a SUSTAINABLE DEVELOPMENT 
653 0 |a VEGETATION 
653 0 |a ECOSYSTEMS 
653 0 |a CONCEPTUAL FRAMEWORK 
653 0 |a ECOSYSTEM FUNCTION 
653 0 |a GRASS 
653 0 |a NUTRIENT CYCLING 
653 0 |a RANGELAND 
653 0 |a PATAGONIA 
653 0 |a POACEAE 
653 0 |a EQUILIBRIUM 
653 0 |a CONCEPTUAL FRAMEWORKS 
653 0 |a ECOSYSTEM ASSESSMENT 
653 0 |a PLANT COMMUNITIES 
653 0 |a RAIN WATER 
653 0 |a RANGELAND ECOSYSTEM 
653 0 |a RECRUITMENT PROCESS 
653 0 |a REFERENCE SYSTEMS 
653 0 |a SOIL INDICATOR 
653 0 |a SOIL SURFACES 
653 0 |a STATE AND TRANSITION 
653 0 |a STATE-AND-TRANSITION MODELS 
653 0 |a STATES AND TRANSITIONS 
653 0 |a STRUCTURAL CHANGE 
653 0 |a SUSTAINABLE MANAGEMENT 
653 0 |a VEGETATION STRUCTURE 
653 0 |a PHASE EQUILIBRIA 
653 0 |a PLASMA STABILITY 
653 0 |a SOILS 
653 0 |a STABILITY 
653 0 |a VEGETATION 
653 0 |a ECOSYSTEM RESILIENCE 
653 0 |a SHRUB 
653 0 |a STEPPE 
700 1 |9 68832  |a López, Dardo Rubén 
700 1 |9 39951  |a Brizuela, Miguel Angel 
700 1 |9 12913  |a Willems, Priscila Mabel 
700 1 |9 12939  |a Aguiar, Martín Roberto 
700 1 |a Siffredi, Guillermo L.  |9 32632 
700 1 |a Bran, Donaldo Eduardo  |9 16042 
773 |t Ecological Indicators  |g vol.24 (2013), p.1-11 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2013lopez.pdf  |i En reservorio  |q application/pdf  |f 2013lopez  |x MIGRADOS2018 
856 |u http://www.elsevier.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20141009 
900 |a N 
900 |a SCOPUS 
900 |a N13 
900 |a N13SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 1470160X 
900 |a 10.1016/j.ecolind.2012.05.014 
900 |a ^tLinking ecosystem resistance, resilience, and stability in steppes of North Patagonia 
900 |a ^aLópez^bD.R. 
900 |a ^aBrizuela^bM.A. 
900 |a ^aWillems^bP. 
900 |a ^aAguiar^bM.R. 
900 |a ^aSiffredi^bG. 
900 |a ^aBran^bD. 
900 |a ^aLópez^bD. R. 
900 |a ^aBrizuela^bM. A. 
900 |a ^aWillems^bP. 
900 |a ^aAguiar^bM. R. 
900 |a ^aSiffredi^bG. 
900 |a ^aBran^bD. 
900 |a ^t^s 
900 |a ^aLópez^bD.R.^tÃ_rea de Recursos Naturales, INTA Bariloche, Argentina 
900 |a ^aBrizuela^bM.A.^tFacultad de Ciencias Agrarias [UNMdP-CIC Bs. As.], Argentina 
900 |a ^aWillems^bP.^tFacultad de Agronomía, IFEVA [UBA-CONICET], Argentina 
900 |a ^aAguiar^bM.R. 
900 |a ^aSiffredi^bG. 
900 |a ^aBran^bD. 
900 |a ^aLópez, D.R^tÃ_rea de Recursos Naturales, INTA Bariloche, Argentina 
900 |a ^aBrizuela, M.A^tFacultad de Ciencias Agrarias (UNMdP-CIC Bs^tAs.), Argentina 
900 |a ^aWillems, P^tÃ_rea de Recursos Naturales, INTA Bariloche, Argentina 
900 |a ^aAguiar, M.R^tFacultad de Agronomía, IFEVA (UBA-CONICET), Argentina 
900 |a ^aSiffredi, G^tÃ_rea de Recursos Naturales, INTA Bariloche, Argentina 
900 |a ^aBran, D^tÃ_rea de Recursos Naturales, INTA Bariloche, Argentina 
900 |a ^a^b^f 
900 |a ^n^s^l^p^f 
900 |a ^tEcological Indicators^cEcol. Indic. 
900 |a ^n^x^o^s 
900 |a ^l^p 
900 |a ^n^s^l^p^f 
900 |a ^e^l 
900 |a en 
900 |a 1 
900 |a Vol. 24 
900 |a ^i^n^e 
900 |a ^n^s^e^g^a^d 
900 |a 11 
900 |a EQUILIBRIUM 
900 |a INSTABILITY 
900 |a INTEGRITY INDEX 
900 |a STATE AND TRANSITION 
900 |a STRUCTURAL-FUNCTIONAL 
900 |a THRESHOLD 
900 |a CRITICAL THRESHOLD 
900 |a DISTURBANCE FACTORS 
900 |a DYNAMIC EQUILIBRIUM 
900 |a ECOSYSTEM RESILIENCE 
900 |a FUNCTIONAL ATTRIBUTE 
900 |a NUTRIENT CYCLING 
900 |a PLANT COMMUNITIES 
900 |a RAIN WATER 
900 |a RANGELAND ECOSYSTEM 
900 |a RECRUITMENT PROCESS 
900 |a REFERENCE SYSTEMS 
900 |a SOIL INDICATOR 
900 |a SOIL SURFACES 
900 |a STATE-AND-TRANSITION MODELS 
900 |a STATES AND TRANSITIONS 
900 |a STRUCTURAL CHANGE 
900 |a SUSTAINABLE MANAGEMENT 
900 |a VEGETATION STRUCTURE 
900 |a PHASE EQUILIBRIA 
900 |a PLASMA STABILITY 
900 |a SOILS 
900 |a STABILITY 
900 |a SUSTAINABLE DEVELOPMENT 
900 |a VEGETATION 
900 |a ECOSYSTEMS 
900 |a CONCEPTUAL FRAMEWORK 
900 |a ECOSYSTEM FUNCTION 
900 |a GRASS 
900 |a NUTRIENT CYCLING 
900 |a RANGELAND 
900 |a PATAGONIA 
900 |a POACEAE 
900 |a EQUILIBRIUM 
900 |a CONCEPTUAL FRAMEWORKS 
900 |a ECOSYSTEM ASSESSMENT 
900 |a PLANT COMMUNITIES 
900 |a RAIN WATER 
900 |a RANGELAND ECOSYSTEM 
900 |a RECRUITMENT PROCESS 
900 |a REFERENCE SYSTEMS 
900 |a SOIL INDICATOR 
900 |a SOIL SURFACES 
900 |a STATE AND TRANSITION 
900 |a STATE-AND-TRANSITION MODELS 
900 |a STATES AND TRANSITIONS 
900 |a STRUCTURAL CHANGE 
900 |a SUSTAINABLE MANAGEMENT 
900 |a VEGETATION STRUCTURE 
900 |a PHASE EQUILIBRIA 
900 |a PLASMA STABILITY 
900 |a SOILS 
900 |a STABILITY 
900 |a VEGETATION 
900 |a ECOSYSTEM RESILIENCE 
900 |a SHRUB 
900 |a STEPPE 
900 |a The main objective of an ecosystem sustainable management is to preserve its capacity to respond and adapt to current disturbances and/or future changes, and maintain the provision of environmental goods and services. Two very important properties linked to this objective are the ecosystem resilience and resistance to disturbance factors. The Structural-Functional State and Transition Model [SFSTM] is a conceptual framework that allows evaluating the ecosystem resilience and resistance based on structural and functional attributes. On the other hand, the Landscape Functional Analysis [LFA] presents a method to assess the rangeland "health" based on structural vegetation and soil indicators, creating indexes to evaluate the ecosystem functional integrity. The aim of this study is to integrate LFA and SFSTM as an approach to help validate indicators and indexes associated with the resistance, resilience, and stability of a temperate rangeland ecosystem. States and transitions model for a shrubby-grasses steppe of the Western Patagonian District was used as a reference system. Changes in vegetation structure, soil surface, and loss of soil due to erosion were determined in sites with different grazing histories. Based on the SFSTM, we assessed the relationships between ecosystem structural changes with the recruitment process of the plant community and ecosystem integrity indexes [sensu LFA]. Our results indicate that the decrease in the recruitment process, related to different grazing histories, was associated with a loss of ecosystem functional integrity. This was associated to a decrease in the ability to retain, store, and use rain water, and also in nutrient cycling. This suggests that the integration of the LFA methodology to the SFSTM can be used for indexes validation, which in turn allows the identification of critical thresholds associated with ecosystem resilience loss. Finally, throughout the integration of indicators of LFA into SFSTM, we established relationships between ecosystem resistance, resilience, and stability in response to a disturbance factor [e.g. overgrazing]. Thus, we used this information to define states in stable, unstable, mixed-unstable, and indifferent-stable dynamic equilibriums. Our proposed approach provides a tool for ecosystem assessment regarding the identification of states that can be restored and those that might be more susceptible to degradation. Such information might help in the prevention of crossing a critical threshold and be used for sustainable management programs in rangelands. 
900 |a 24 
900 |a 2013 
900 |a AAG 
900 |a AGROVOC 
900 |a ^c^m 
900 |a ^c^m 
900 |a 2013lopez 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2013lopez.pdf 
900 |a 2013lopez.pdf 
900 |a http://www.elsevier.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84863223487&partnerID=40&md5=d1c8d9c5e6407a1163e766bee5639c0c 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc