The photochemical reflectance index [PRI] and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies a review and meta - analysis

Traditional remote sensing techniques allow the assessment of green plant biomass, and therefore plant photosynthetic capacity. However, detecting how much of this capacity is actually realized is a more challenging goal. Is it possible to remotely assess actual carbon fluxes? Can this be done at le...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Garbulsky, Martín Fabio, Peñuelas, Josep, Gamon, J., Inoue, Y., Filella, Iolanda
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2011Garbulsky.pdf
LINK AL EDITOR.
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12886cab a22023417a 4500
001 AR-BaUFA000040
003 AR-BaUFA
005 20220809111844.0
008 181208t2011 |||||o|||||00||||eng d
999 |c 46474  |d 46474 
022 |a 0034-4257 
024 |a 10.1016/j.rse.2010.08.023 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a The photochemical reflectance index [PRI] and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies   |b a review and meta - analysis 
520 |a Traditional remote sensing techniques allow the assessment of green plant biomass, and therefore plant photosynthetic capacity. However, detecting how much of this capacity is actually realized is a more challenging goal. Is it possible to remotely assess actual carbon fluxes? Can this be done at leaf, canopy and ecosystem scales and at different temporal scales? Different approaches can be used to answer these questions. Among them, the Photochemical Reflectance Index [PRI] derived from narrow-band spectroradiometers is a spectral index increasingly being used as an indicator of photosynthetic efficiency. We examined and synthesized the scientific literature on the relationships between PRI and several ecophysiological variables across a range of plant functional types and ecosystems at the leaf, canopy and ecosystem levels and at the daily and seasonal time scales. Our analysis shows that although the strength of these relationships varied across vegetation types, levels of organization and temporal scales, in most reviewed articles PRI was a good predictor of photosynthetic efficiency or related variables with performances at least as good as the widely used NDVI as indicator of green biomass. There are possible confounding factors related to the intensity of the physiological processes linked to the PRI signals, to the structure of the canopies and to the illumination and viewing angles that warrant further studies, and it is expected that the utility of PRI will vary with the ecosystem in question due to contrasting environmental constraints, evolutionary strategies, and radiation use efficiency [RUE; the ratio between carbon uptake and light absorbed by vegetation] variability. Clearly, more research comparing ecosystem responses is warranted. Additionally, like any 2-band index that is affected by multiple factors, the interpretation of PRI can be readily confounded by multiple environmental variables, and further work is needed to understand and constrain these effects. Despite these limitations, this review shows an emerging consistency of the RUE-PRI relationship that suggests a surprising degree of functional convergence of biochemical, physiological and structural components affecting leaf, canopy and ecosystem carbon uptake efficiencies. PRI accounted for 42 percent, 59 percent and 62 percent of the variability of RUE at the leaf, canopy and ecosystem respective levels in unique exponential relationships for all the vegetation types studied. It seems thus that by complementing the estimations of the fraction of photosynthetically active radiation intercepted by the vegetation [FPAR], estimated with NDVI-like indices, PRI enables improved assessment of carbon fluxes in leaves, canopies and many of the ecosystems of the world from ground, airborne and satellite sensors. 
653 0 |a GROSS PRIMARY PRODUCTIVITY 
653 0 |a MODIS 
653 0 |a PHOTOCHEMICAL REFLECTANCE INDEX 
653 0 |a BAND INDEX 
653 0 |a CARBON FLUXES 
653 0 |a CARBON UPTAKE 
653 0 |a ECOSYSTEM LEVELS 
653 0 |a ECOSYSTEM RESPONSE 
653 0 |a ENVIRONMENTAL CONSTRAINTS 
653 0 |a ENVIRONMENTAL VARIABLES 
653 0 |a EVOLUTIONARY STRATEGIES 
653 0 |a FRACTION OF PHOTOSYNTHETICALLY ACTIVE RADIATIONS 
653 0 |a GREEN PLANTS 
653 0 |a META-ANALYSIS 
653 0 |a MULTIPLE FACTORS 
653 0 |a NARROW BANDS 
653 0 |a PHOTOSYNTHETIC CAPACITY 
653 0 |a PHOTOSYNTHETIC EFFICIENCY 
653 0 |a PHYSIOLOGICAL PROCESS 
653 0 |a PLANT FUNCTIONAL TYPE 
653 0 |a RADIATION USE EFFICIENCY 
653 0 |a RELATED VARIABLES 
653 0 |a REMOTE SENSING TECHNIQUES 
653 0 |a SATELLITE SENSORS 
653 0 |a SCIENTIFIC LITERATURE 
653 0 |a SPECTRAL INDICES 
653 0 |a SPECTRO-RADIOMETERS 
653 0 |a STRUCTURAL COMPONENT 
653 0 |a TEMPORAL SCALE 
653 0 |a TIME-SCALES 
653 0 |a VEGETATION TYPE 
653 0 |a VIEWING ANGLE 
653 0 |a BIOMASS 
653 0 |a EVOLUTIONARY ALGORITHMS 
653 0 |a FORESTRY 
653 0 |a PHOTOSYNTHESIS 
653 0 |a PHYSIOLOGY 
653 0 |a PHYTOPLANKTON 
653 0 |a PRODUCTIVITY 
653 0 |a RADIOMETERS 
653 0 |a RATING 
653 0 |a REFLECTION 
653 0 |a REMOTE SENSING 
653 0 |a VEGETATION 
653 0 |a ECOSYSTEMS 
653 0 |a CARBON FLUX 
653 0 |a ECOPHYSIOLOGY 
653 0 |a ECOSYSTEM RESPONSE 
653 0 |a FUNCTIONAL GROUP 
653 0 |a LEAF 
653 0 |a LIGHT USE EFFICIENCY 
653 0 |a LITERATURE REVIEW 
653 0 |a META-ANALYSIS 
653 0 |a NDVI 
653 0 |a PHOTOCHEMISTRY 
653 0 |a PHOTOSYNTHESIS 
653 0 |a PHOTOSYNTHETICALLY ACTIVE RADIATION 
653 0 |a PHYTOMASS 
653 0 |a RADIOMETER 
653 0 |a REFLECTANCE 
653 0 |a REMOTE SENSING 
653 0 |a SATELLITE SENSOR 
653 0 |a VIRIDIPLANTAE 
700 1 |9 17762  |a Garbulsky, Martín Fabio 
700 1 |9 50629  |a Peñuelas, Josep 
700 1 |a Gamon, J.  |9 69379 
700 1 |a Inoue, Y.  |9 69380 
700 1 |9 66929  |a Filella, Iolanda 
773 |t Remote Sensing of Environment  |g Vol.115, no.2 (2011), p.281-297 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2011Garbulsky.pdf  |i En reservorio  |q application/pdf  |f 2011Garbulsky  |x MIGRADOS2018 
856 |u http://www.elsevier.com/  |x MIGRADOS2018  |z LINK AL EDITOR. 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 00344257 
900 |a 10.1016/j.rse.2010.08.023 
900 |a ^tThe photochemical reflectance index [PRI] and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies^sA review and meta-analysis 
900 |a ^aGarbulsky^bM.F. 
900 |a ^aPeñuelas^bJ. 
900 |a ^aGamon^bJ. 
900 |a ^aInoue^bY. 
900 |a ^aFilella^bI. 
900 |a ^aGarbulsky^bM. F. 
900 |a ^aPeñuelas^bJ. 
900 |a ^aGamon^bJ. 
900 |a ^aInoue^bY. 
900 |a ^aFilella^bI. 
900 |a ^aGarbulsky, M.F.^tGlobal Ecology Unit, CREAF, CEAB, CSIC, Center for Ecological Research and Forestry Applications, Universitat Autónoma de Barcelona, 08193 Bellaterra, Catalunya, Spain 
900 |a ^aPeñuelas, J.^tFaculty of Agronomy, Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina 
900 |a ^aGamon, J.^tDepartments of Earth and Atmospheric Sciences and Biological Sciences, University of Alberta, Edmonton T6G 2E3, Alberta, Canada 
900 |a ^aInoue, Y.^tNational Institute for Agro-Environmental Sciences [NIAES] Tsukuba, Ibaraki 305-8604, Japan 
900 |a ^aFilella, I.^t 
900 |a ^tRemote Sensing of Environment^cRemote Sens. Environ. 
900 |a en 
900 |a 281 
900 |a ^i 
900 |a Vol. 115, no. 2 
900 |a 297 
900 |a GROSS PRIMARY PRODUCTIVITY 
900 |a MODIS 
900 |a PHOTOCHEMICAL REFLECTANCE INDEX 
900 |a BAND INDEX 
900 |a CARBON FLUXES 
900 |a CARBON UPTAKE 
900 |a ECOSYSTEM LEVELS 
900 |a ECOSYSTEM RESPONSE 
900 |a ENVIRONMENTAL CONSTRAINTS 
900 |a ENVIRONMENTAL VARIABLES 
900 |a EVOLUTIONARY STRATEGIES 
900 |a FRACTION OF PHOTOSYNTHETICALLY ACTIVE RADIATIONS 
900 |a GREEN PLANTS 
900 |a META-ANALYSIS 
900 |a MULTIPLE FACTORS 
900 |a NARROW BANDS 
900 |a PHOTOSYNTHETIC CAPACITY 
900 |a PHOTOSYNTHETIC EFFICIENCY 
900 |a PHYSIOLOGICAL PROCESS 
900 |a PLANT FUNCTIONAL TYPE 
900 |a RADIATION USE EFFICIENCY 
900 |a RELATED VARIABLES 
900 |a REMOTE SENSING TECHNIQUES 
900 |a SATELLITE SENSORS 
900 |a SCIENTIFIC LITERATURE 
900 |a SPECTRAL INDICES 
900 |a SPECTRO-RADIOMETERS 
900 |a STRUCTURAL COMPONENT 
900 |a TEMPORAL SCALE 
900 |a TIME-SCALES 
900 |a VEGETATION TYPE 
900 |a VIEWING ANGLE 
900 |a BIOMASS 
900 |a EVOLUTIONARY ALGORITHMS 
900 |a FORESTRY 
900 |a PHOTOSYNTHESIS 
900 |a PHYSIOLOGY 
900 |a PHYTOPLANKTON 
900 |a PRODUCTIVITY 
900 |a RADIOMETERS 
900 |a RATING 
900 |a REFLECTION 
900 |a REMOTE SENSING 
900 |a VEGETATION 
900 |a ECOSYSTEMS 
900 |a CARBON FLUX 
900 |a ECOPHYSIOLOGY 
900 |a ECOSYSTEM RESPONSE 
900 |a FUNCTIONAL GROUP 
900 |a LEAF 
900 |a LIGHT USE EFFICIENCY 
900 |a LITERATURE REVIEW 
900 |a META-ANALYSIS 
900 |a NDVI 
900 |a PHOTOCHEMISTRY 
900 |a PHOTOSYNTHESIS 
900 |a PHOTOSYNTHETICALLY ACTIVE RADIATION 
900 |a PHYTOMASS 
900 |a RADIOMETER 
900 |a REFLECTANCE 
900 |a REMOTE SENSING 
900 |a SATELLITE SENSOR 
900 |a VIRIDIPLANTAE 
900 |a Traditional remote sensing techniques allow the assessment of green plant biomass, and therefore plant photosynthetic capacity. However, detecting how much of this capacity is actually realized is a more challenging goal. Is it possible to remotely assess actual carbon fluxes? Can this be done at leaf, canopy and ecosystem scales and at different temporal scales? Different approaches can be used to answer these questions. Among them, the Photochemical Reflectance Index [PRI] derived from narrow-band spectroradiometers is a spectral index increasingly being used as an indicator of photosynthetic efficiency. We examined and synthesized the scientific literature on the relationships between PRI and several ecophysiological variables across a range of plant functional types and ecosystems at the leaf, canopy and ecosystem levels and at the daily and seasonal time scales. Our analysis shows that although the strength of these relationships varied across vegetation types, levels of organization and temporal scales, in most reviewed articles PRI was a good predictor of photosynthetic efficiency or related variables with performances at least as good as the widely used NDVI as indicator of green biomass. There are possible confounding factors related to the intensity of the physiological processes linked to the PRI signals, to the structure of the canopies and to the illumination and viewing angles that warrant further studies, and it is expected that the utility of PRI will vary with the ecosystem in question due to contrasting environmental constraints, evolutionary strategies, and radiation use efficiency [RUE; the ratio between carbon uptake and light absorbed by vegetation] variability. Clearly, more research comparing ecosystem responses is warranted. Additionally, like any 2-band index that is affected by multiple factors, the interpretation of PRI can be readily confounded by multiple environmental variables, and further work is needed to understand and constrain these effects. Despite these limitations, this review shows an emerging consistency of the RUE-PRI relationship that suggests a surprising degree of functional convergence of biochemical, physiological and structural components affecting leaf, canopy and ecosystem carbon uptake efficiencies. PRI accounted for 42 percent, 59 percent and 62 percent of the variability of RUE at the leaf, canopy and ecosystem respective levels in unique exponential relationships for all the vegetation types studied. It seems thus that by complementing the estimations of the fraction of photosynthetically active radiation intercepted by the vegetation [FPAR], estimated with NDVI-like indices, PRI enables improved assessment of carbon fluxes in leaves, canopies and many of the ecosystems of the world from ground, airborne and satellite sensors. 
900 |a 115 
900 |a 2 
900 |a 2011 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2011Garbulsky 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2011Garbulsky.pdf 
900 |a 2011Garbulsky.pdf 
900 |a http://www.elsevier.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-78650884652&partnerID=40&md5=6b0f032f34fa1b67c1fd7ff2ef5f2bb6 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc