Solar UV radiation in a changing world roles of cryosphere – land – water – atmosphere interfaces in global biogeochemical cycles

Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, parti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Sulzberger, Barbara, Austin, Amy Theresa, Cory, R. M., Zepp, Richard G., Paul, Nigel D.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2019sulzberger.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04044nab a22005417a 4500
001 20190604134204.0
003 AR-BaUFA
005 20221025131851.0
008 190604t2019 xxkado||o|||| 00| | eng d
999 |c 46399  |d 46399 
999 |d 46399 
999 |d 46399 
999 |d 46399 
999 |d 46399 
999 |d 46399 
999 |d 46399 
022 |a 1474-905X 
024 |a 10.1039/c8pp90063a rsc.li/pps 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Solar UV radiation in a changing world  |b roles of cryosphere – land – water – atmosphere interfaces in global biogeochemical cycles 
520 |a Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO2) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO2, including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes. 
650 |2 Agrovoc  |9 26 
653 |a ANIMALS 
653 |a ARCTIC REGIONS 
653 |a CARBON 
653 |a CARBON DIOXIDE 
653 |a CLIMATE CHANGE 
653 |a ENVIRONMENTAL POLLUTANTS 
653 |a FRESH WATER 
653 |a GLOBAL WARMING 
653 |a GREENHOUSE GASES 
653 |a ICE COVER 
653 |a OCEANS AND SEAS 
653 |a OZONE DEPLETION 
653 |a PHOTOLYSIS 
653 |a STRATOSPHERIC OZONE 
653 |a ULTRAVIOLET RAYS 
700 1 |a Sulzberger, Barbara  |u Swiss Federal Institute of Aquatic Science and Technology. Duebendorf, Switzerland.  |9 67574 
700 1 |a Austin, Amy Theresa  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 48259 
700 1 |a Cory, R. M.  |u University of Michigan. Earth and Environmental Science. Michigan, USA.  |9 68754 
700 1 |a Zepp, Richard G.  |u United States Environmental Protection Agency. Athens, Georgia, USA.  |9 68755 
700 1 |a Paul, Nigel D.  |u Lancaster University. Lancaster Environment Centre. UK.  |9 68771 
773 |t Photochemical and Photobiological Sciences  |g vol.18, no.3 (2019), p.747–774, grafs., il., fot. 
856 |f 2019sulzberger  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2019sulzberger.pdf  |x ARTI201904 
856 |z LINK AL EDITOR  |u https://www.rsc.org 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG