Comparative phylogenetic and expression analysis of small GTPases families in legume and non - legume plants

Background: Small monomeric GTPases act as molecular switches in several processes that involve polar cell growth, participating mainly in vesicle trafficking and cytoskeleton rearrangements. This gene superfamily has largely expanded in plants through evolution as compared with other Kingdoms, lead...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Flores, Ana Claudia, Dalla Via, Virginia, Savy, Virginia, Mancini Villagra, Ulises, Zanetti, María Eugenia, Blanco, Flavio
Formato: Artículo
Lenguaje:Inglés
Materias:
ARF
RAB
ROP
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2018flores.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05417nab a22004097a 4500
001 20190426143019.0
003 AR-BaUFA
005 20210322184102.0
008 190426t2018 xxkd|||oo|||| 00| 0 eng d
999 |c 46286  |d 46286 
999 |d 46286 
999 |d 46286 
999 |d 46286 
999 |d 46286 
022 |a 1559-2324 
024 |a 10.1080/15592324.2018.1432956 
040 |a AR-BaUFA 
245 1 0 |a Comparative phylogenetic and expression analysis of small GTPases families in legume and non - legume plants 
520 |a Background: Small monomeric GTPases act as molecular switches in several processes that involve polar cell growth, participating mainly in vesicle trafficking and cytoskeleton rearrangements. This gene superfamily has largely expanded in plants through evolution as compared with other Kingdoms, leading to the suggestion that members of each subfamily might have acquired new functions associated to plant - specific processes. Legume plants engage in a nitrogen - fixing symbiotic interaction with rhizobia in a process that involves polar growth processes associated with the infection throughout the root hair. To get insight into the evolution of small GTPases associated with this process, we use a comparative genomic approach to establish differences in the Ras GTPase superfamily between legume and non - legume plants. Results: Phylogenetic analyses did not show clear differences in the organization of the different subfamilies of small GTPases between plants that engage or not in nodule symbiosis. Protein alignments revealed a strong conservation at the sequence level of small GTPases previously linked to nodulation by functional genetics. Interestingly, one Rab and three Rop proteins showed conserved amino acid substitutions in legumes, but these changes do not alter the predicted conformational structure of these proteins. Although the steady - state levels of most small GTPases do not change in response to rhizobia, we identified a subset of Rab, Rop and Arf genes whose transcript levels are modulated during the symbiotic interaction, including their spatial distribution along the indeterminate nodule. Conclusions: This study provides a comprehensive study of the small GTPase superfamily in several plant species. The genetic program associated to root nodule symbiosis includes small GTPases to fulfill specific functions during infection and formation of the symbiosomes. These GTPases seems to have been recruited from members that were already present in common ancestors with plants as distant as monocots since we failed to detect asymmetric evolution in any of the subfamily trees. Expression analyses identified a number of legume members that can have undergone neo - or sub - functionalization associated to the spatio - temporal transcriptional control during the onset of the symbiotic interaction. 
653 |a ARF 
653 |a BIOLOGICAL NITROGEN FIXATION 
653 |a COMPARATIVE GENOMICS 
653 |a RAB 
653 |a ROP 
653 |a SYMBIOSIS 
700 1 |a Flores, Ana Claudia  |u Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular. La Plata, Buenos Aires, Argentina.  |u Centro Científico y Tecnológico La Plata. La Plata, Buenos Aires, Argentina.  |u CONICET - La Plata, Buenos Aires, Argentina.  |9 68558 
700 1 |a Dalla Via, Virginia  |u Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular. La Plata, Buenos Aires, Argentina.  |u Centro Científico y Tecnológico La Plata. La Plata, Buenos Aires,Argentina.  |u CONICET - La Plata, Buenos Aires,Argentina.  |9 68559 
700 1 |9 68562  |a Savy, Virginia  |u Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular. La Plata, Buenos Aires, Argentina.  |u Centro Científico y Tecnológico La Plata. La Plata, Buenos Aires,Argentina.  |u CONICET - La Plata, Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina. 
700 1 |a Mancini Villagra, Ulises  |u Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular. La Plata, Buenos Aires, Argentina.  |u Centro Científico y Tecnológico La Plata. La Plata, Buenos Aires, Argentina.  |u CONICET - La Plata, Buenos Aires, Argentina.  |9 68563 
700 1 |a Zanetti, María Eugenia  |u Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular. La Plata, Buenos Aires, Argentina.  |u Centro Científico y Tecnológico La Plata. La Plata, Buenos Aires, Argentina.  |u CONICET - La Plata, Buenos Aires, Argentina.  |9 68564 
700 1 |a Blanco, Flavio  |u Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular. La Plata, Buenos Aires, Argentina.  |u Centro Científico y Tecnológico La Plata. La Plata, Buenos Aires, Argentina.  |u CONICET - La Plata, Buenos Aires, Argentina.  |9 68565 
773 |t Plant Signaling and Behavior  |g vol.13, no.2 (2018), e1432956, 12 p., grafs., tbls. 
856 |f 2018flores  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2018flores.pdf  |x ARTI201904 
856 |u https://taylorandfrancis.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG