Multiple links between shade avoidance and auxin networks

Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade - avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection betw...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Iglesias, María José, Sellaro, Romina, Zurbriggen, Matías D., Casal, Jorge José
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2018iglesias.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03440nab a22003857a 4500
001 20190424155733.0
003 AR-BaUFA
005 20221026112335.0
008 190424t2018 xxkd|||oo|||| 00| 0 eng d
999 |c 46271  |d 46271 
999 |d 46271 
999 |d 46271 
999 |d 46271 
999 |d 46271 
022 |a 0022-0957 
024 |a 10.1093/jxb/erx295 
040 |a AR-BaUFA 
245 1 0 |a Multiple links between shade avoidance and auxin networks 
520 |a Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade - avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection between light and auxin signalling. Low activity of photo - sensory receptors caused by the presence of neighbouring vegetation enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs), which directly promote the expression of genes involved in auxin biosynthesis, conjugation, transport, perception, and signalling. In seedlings, neighbour signals increase auxin levels in the foliage, which then moves to the stem, where it reaches epidermal tissues to promote growth. However, this model only partially accounts for shade - avoidance responses (which may also occur in the absence of increased auxin levels), and understanding the whole picture will require further insight into the functional significance of the multiple links between shade and auxin networks. 
653 |a AUXIN 
653 |a CRYPTOCHROME 
653 |a GROWTH 
653 |a PHYTOCHROME 
653 |a PHYTOCHROME INTERACTING FACTOR (PIF) 
653 |a SHADE AVOIDANCE 
700 1 |a Iglesias, María José  |u Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas. Mar del Plata, Argentina.  |u CONICET - Universidad Nacional de Mar del Plata. Instituto de Investigaciones Biológicas. Mar del Plata, Argentina.  |9 68528 
700 1 |9 67310  |a Sellaro, Romina  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 68529  |a Zurbriggen, Matías D.  |u University of Düsseldorf. Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS. Düsseldorf, Germany. 
700 1 |9 792  |a Casal, Jorge José  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina  |u CONICET. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires. Buenos Aires, Argentina. 
773 0 |t Journal of experimental botany  |w SECS000114  |g vol.69, no.2 (2018), p.213-228, grafs., tbls. 
856 |f 2018iglesias  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2018iglesias.pdf  |x ARTI201904 
856 |u https://academic.oup.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG