Geographic variation in Festuca rubra L. ploidy levels and systemic fungal endophyte frequencies

Polyploidy and symbiotic Epichloeë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations fro...

Descripción completa

Detalles Bibliográficos
Otros Autores: Dirihan, Serdar, Helander, Marjo, Väre, Henry, Gundel, Pedro Emilio, Garibaldi, Lucas Alejandro, Irisarri, Jorge Gonzalo Nicolás, Saloniemi, Irma, Saikkonen, Kari
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2016dirihan.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05326nab a22006857a 4500
001 20180801145011.0
003 AR-BaUFA
005 20230405101156.0
008 180801t2016 xxu|||||o|||| 00| 0 eng d
999 |c 45758  |d 45758 
999 |d 45758 
999 |d 45758 
999 |d 45758 
999 |d 45758 
999 |d 45758 
999 |d 45758 
024 |a 10.1371/journal.pone.0166264 
040 |a AR-BaUFA 
245 1 0 |a Geographic variation in Festuca rubra L. ploidy levels and systemic fungal endophyte frequencies 
520 |a Polyploidy and symbiotic Epichloeë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42), and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28), whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56). Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation period, and local adaptations to past or prevailing selection forces such as vertebrate grazing. 
653 |a CONTROLLED STUDY 
653 |a ENDOPHYTE 
653 |a ENDOPHYTIC FUNGUS 
653 |a FESTUCA RUBRA 
653 |a FINLAND 
653 |a FUNGAL COLONIZATION 
653 |a GEOGRAPHICAL VARIATION (SPECIES) 
653 |a GREENLAND 
653 |a HEXAPLOIDY 
653 |a LATITUDE 
653 |a NONHUMAN 
653 |a PLOIDY 
653 |a POLYPLOIDY 
653 |a RIPARIAN ECOSYSTEM 
653 |a SPAIN 
653 |a SWITZERLAND 
653 |a SIMBIOSIS 
653 |a DENMARK 
653 |a ECOSYSTEM 
653 |a EPICHLOE 
653 |a FESCUE 
653 |a GENETICS 
653 |a GROWTH, DEVELOPMENT AND AGING 
653 |a ICELAND 
653 |a MICROBIOLOGY 
653 |a POPULATION GENETICS 
700 1 |9 67616  |a Dirihan, Serdar  |u University of Turku. Department of Biology. Turku, Finland. 
700 1 |9 67617  |a Helander, Marjo  |u University of Turku. Department of Biology. Turku, Finland.  |u Natural Resources Institute Finland (Luke). Turku, Finland. 
700 1 |9 67618  |a Väre, Henry  |u Botanical Museum, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland 
700 1 |9 28667  |a Gundel, Pedro Emilio  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  
700 1 |9 31177  |a Garibaldi, Lucas Alejandro  |u Universidad Nacional de Río Negro (UNRN). Sede Andina. Grupo de Investigación en Agroecología (AGRECO). Río Negro, Argentina.  |u CONICET - Universidad Nacional de Río Negro. San Carlos de Bariloche, Río Negro, Argentina. 
700 1 |9 12998  |a Irisarri, Jorge Gonzalo Nicolás  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  
700 1 |a Saloniemi, Irma  |u University of Turku. Department of Biology. Turku, Finland.  |9 67619 
700 1 |9 67620  |a Saikkonen, Kari  |u Natural Resources Institute Finland (Luke). Turku, Finland. 
773 |t Plos One  |g Vol.11, no.11 (2016), e0166264, tbls., grafs. 
856 |f 2016dirihan  |i En Internet:  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2016dirihan.pdf  |x ARTI201808 
856 |u http://www.journals.plos.org  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG