Understanding plant responses to saline waterlogging insights from halophytes and implications for crop tolerance

Main conclusion Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stress...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Martins, Tamires S., Da Silva, Cristiane J, Shabala, Sergey, Striker, Gustavo G, Carvalho, Ivan R, Barneche de Oliveira, Ana Cláudia, Amarante, Luciano do
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2024martins.pdf
Material complementario
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04849cab a22004697a 4500
001 20250715151605.0
003 AR-BaUFA
005 20250905091518.0
008 250715t2024 gw ad|||o|||| 00| b|eng d
999 |c 57410  |d 57410 
999 |d 57410 
999 |d 57410 
999 |d 57410 
999 |d 57410 
999 |d 57410 
999 |d 57410 
022 |a 0032-0935 
024 |a 10.1007/s00425-023-04275-0 
040 |a AR-BaUFA  |c AR-BaUFA 
245 0 0 |a Understanding plant responses to saline waterlogging  |b insights from halophytes and implications for crop tolerance 
520 |a Main conclusion Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stresses that have a major negative impact on crop growth and yield. These conditions cause osmotic, ionic, and oxidative stress, as well as energy deprivation, thus impairing plant growth and development. Although few crop species can tolerate the combination of salinity and waterlogging, halophytes are plant species that exhibit high tolerance to these conditions due to their morphological, anatomical, and metabolic adaptations. In this review, we discuss the main mechanisms employed by plants exposed to saline waterlogging, intending to understand the mechanistic basis of their ion homeostasis. We summarize the knowledge of transporters and channels involved in ion accumulation and exclusion, and how they are modulated to prevent cytosolic toxicity. In addition, we discuss how reactive oxygen species production and cell signaling enhance ion transport and aerenchyma formation, and how plants exposed to saline waterlogging can control oxidative stress. We also address the morphological and anatomical modifications that plants undergo in response to combined stress, including aerenchyma formation, root porosity, and other traits that help to mitigate stress. Furthermore, we discuss the peculiarities of halophyte plants and their features that can be leveraged to improve crop yields in areas prone to saline waterlogging. This review provides valuable insights into the mechanisms of plant adaptation to saline waterlogging thus paving the path for future research on crop breeding and management strategies. 
650 |2 Agrovoc  |9 26 
653 |a ION TOXICITY 
653 |a HYPOXIA 
653 |a OSMOTIC STRESS 
653 |a OXIDATIVE STRESS 
653 |a SALINITY 
653 |a WATERLOGGING 
700 1 |a Martins, Tamires S.  |u Universidade Federal de Pelotas. Departamento de Botânica. Capão Do Leão, Pelotas, Brazil.  |u University of Campinas (UNICAMP). Department of Plant Biology, Institute of Biology. Laboratory of Crop Physiology (LCroP). Campinas, SP, Brazil.  |9 78979 
700 1 |a Da Silva, Cristiane J.  |u Universidade Federal de Pelotas. Departamento de Botânica. Capão Do Leão, Pelotas, Brazil.  |u NC State University. Department of Horticultural Science. Raleigh, USA.  |9 78770 
700 1 |a Shabala, Sergey  |u University of Western Australia. School of Biological Science. Perth, Australia.  |u Foshan University. International Research Centre for Environmental Membrane Biology. Foshan, China.  |u University of Tasmania. Tasmanian Institute of Agriculture. Hobart, Australia.  |9 70209 
700 1 |a Striker, Gustavo G.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET - Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u The University of Western Australia. Faculty of Science. School of Agriculture and Environment. Crawley, Australia.  |9 78496 
700 1 |a Carvalho, Ivan R.  |u Universidade Regional do Noroeste do Estado do Rio Grande do Sul. Departamento de Estudos Agrários. Ijuí, Brazil.  |9 78497 
700 1 |a Barneche de Oliveira, Ana Cláudia  |u Empresa Brasileira de Pesquisa Agropecuária. Embrapa Clima Temperado. Pelotas, Brazil.  |9 78498 
700 1 |a Amarante, Luciano do  |u Universidade Federal de Pelotas. Departamento de Botânica. Capão Do Leão, Pelotas, Brazil.  |9 78499 
773 0 |t Planta  |g Vol.259, no.1 (2024), art.24, il., grafs., tbls. 
856 |f 2024martins  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2024martins.pdf  |x ARTI202506 
856 |f 2024martins-c1  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2024martins-c1.docx  |z Material complementario 
856 |u http://www.springer.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG