Understanding plant responses to saline waterlogging insights from halophytes and implications for crop tolerance
Main conclusion Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stress...
Guardado en:
Otros Autores: | , , , , , , |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Materias: | |
Acceso en línea: | http://ri.agro.uba.ar/files/intranet/articulo/2024martins.pdf Material complementario LINK AL EDITOR |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 04849cab a22004697a 4500 | ||
---|---|---|---|
001 | 20250715151605.0 | ||
003 | AR-BaUFA | ||
005 | 20250905091518.0 | ||
008 | 250715t2024 gw ad|||o|||| 00| b|eng d | ||
999 | |c 57410 |d 57410 | ||
999 | |d 57410 | ||
999 | |d 57410 | ||
999 | |d 57410 | ||
999 | |d 57410 | ||
999 | |d 57410 | ||
999 | |d 57410 | ||
022 | |a 0032-0935 | ||
024 | |a 10.1007/s00425-023-04275-0 | ||
040 | |a AR-BaUFA |c AR-BaUFA | ||
245 | 0 | 0 | |a Understanding plant responses to saline waterlogging |b insights from halophytes and implications for crop tolerance |
520 | |a Main conclusion Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stresses that have a major negative impact on crop growth and yield. These conditions cause osmotic, ionic, and oxidative stress, as well as energy deprivation, thus impairing plant growth and development. Although few crop species can tolerate the combination of salinity and waterlogging, halophytes are plant species that exhibit high tolerance to these conditions due to their morphological, anatomical, and metabolic adaptations. In this review, we discuss the main mechanisms employed by plants exposed to saline waterlogging, intending to understand the mechanistic basis of their ion homeostasis. We summarize the knowledge of transporters and channels involved in ion accumulation and exclusion, and how they are modulated to prevent cytosolic toxicity. In addition, we discuss how reactive oxygen species production and cell signaling enhance ion transport and aerenchyma formation, and how plants exposed to saline waterlogging can control oxidative stress. We also address the morphological and anatomical modifications that plants undergo in response to combined stress, including aerenchyma formation, root porosity, and other traits that help to mitigate stress. Furthermore, we discuss the peculiarities of halophyte plants and their features that can be leveraged to improve crop yields in areas prone to saline waterlogging. This review provides valuable insights into the mechanisms of plant adaptation to saline waterlogging thus paving the path for future research on crop breeding and management strategies. | ||
650 | |2 Agrovoc |9 26 | ||
653 | |a ION TOXICITY | ||
653 | |a HYPOXIA | ||
653 | |a OSMOTIC STRESS | ||
653 | |a OXIDATIVE STRESS | ||
653 | |a SALINITY | ||
653 | |a WATERLOGGING | ||
700 | 1 | |a Martins, Tamires S. |u Universidade Federal de Pelotas. Departamento de Botânica. Capão Do Leão, Pelotas, Brazil. |u University of Campinas (UNICAMP). Department of Plant Biology, Institute of Biology. Laboratory of Crop Physiology (LCroP). Campinas, SP, Brazil. |9 78979 | |
700 | 1 | |a Da Silva, Cristiane J. |u Universidade Federal de Pelotas. Departamento de Botânica. Capão Do Leão, Pelotas, Brazil. |u NC State University. Department of Horticultural Science. Raleigh, USA. |9 78770 | |
700 | 1 | |a Shabala, Sergey |u University of Western Australia. School of Biological Science. Perth, Australia. |u Foshan University. International Research Centre for Environmental Membrane Biology. Foshan, China. |u University of Tasmania. Tasmanian Institute of Agriculture. Hobart, Australia. |9 70209 | |
700 | 1 | |a Striker, Gustavo G. |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. |u CONICET - Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. |u The University of Western Australia. Faculty of Science. School of Agriculture and Environment. Crawley, Australia. |9 78496 | |
700 | 1 | |a Carvalho, Ivan R. |u Universidade Regional do Noroeste do Estado do Rio Grande do Sul. Departamento de Estudos Agrários. Ijuí, Brazil. |9 78497 | |
700 | 1 | |a Barneche de Oliveira, Ana Cláudia |u Empresa Brasileira de Pesquisa Agropecuária. Embrapa Clima Temperado. Pelotas, Brazil. |9 78498 | |
700 | 1 | |a Amarante, Luciano do |u Universidade Federal de Pelotas. Departamento de Botânica. Capão Do Leão, Pelotas, Brazil. |9 78499 | |
773 | 0 | |t Planta |g Vol.259, no.1 (2024), art.24, il., grafs., tbls. | |
856 | |f 2024martins |i en reservorio |q application/pdf |u http://ri.agro.uba.ar/files/intranet/articulo/2024martins.pdf |x ARTI202506 | ||
856 | |f 2024martins-c1 |i en reservorio |q application/pdf |u http://ri.agro.uba.ar/files/intranet/articulo/2024martins-c1.docx |z Material complementario | ||
856 | |u http://www.springer.com/ |z LINK AL EDITOR | ||
942 | |c ARTICULO | ||
942 | |c ENLINEA | ||
976 | |a AAG |