Household arsenic contaminated water treatment employing iron oxide/ bamboo biochar composite an approach to technology transfer

Commercialization of novel adsorbents technology for providing safe drinking water must consider scaleup methodological approaches to bridge the gap between laboratory and industrial applications. These imply complex matrix analysis and large-scale experiment designs. Arsenic concentrations up to 20...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Alchouron, Jacinta, Navarathna, Chanaka M., Rodrigo, Prashan M., Snyder, Annie, Chludil, Hugo Daniel, Vega, Andrea Susana, Bosi, Gianpiero, Pérez, Felio
Formato: Artículo
Lenguaje:Inglés
Materias:
XPS
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2021alchouron.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05176cab a22004697a 4500
001 20221026123628.0
003 AR-BaUFA
005 20240320115408.0
008 221026t2021 ne da|||o|||| 00| 0 eng d
999 |c 55047  |d 55047 
999 |d 55047 
999 |d 55047 
999 |d 55047 
999 |d 55047 
022 |a 0021-9797 (impreso) 
022 |a 1095-7103 (en línea) 
024 |a 10.1016/j.jcis.2020.11.036 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Household arsenic contaminated water treatment employing iron oxide/ bamboo biochar composite  |b an approach to technology transfer 
520 |a Commercialization of novel adsorbents technology for providing safe drinking water must consider scaleup methodological approaches to bridge the gap between laboratory and industrial applications. These imply complex matrix analysis and large-scale experiment designs. Arsenic concentrations up to 200-fold higher (2000 mg/L) than the WHO safe drinking limit (10 mg/L) have been reported in Latin American drinking waters. In this work, biochar was developed from a single, readily available, and taxonomically identified woody bamboo species, Guadua chacoensis. Raw biochar (BC) from slow pyrolysis (700 C for 1 h) and its analog containing chemically precipitated Fe3O4 nanoparticles (BC-Fe) were produced. BC-Fe performed well in fixed-bed column sorption. Predicted model capacities ranged from 8.2 to 7.5 mg/g and were not affected by pH 5–9 shift. The effect of competing matrix chemicals including sulfate, phosphate, nitrate, chloride, acetate, dichromate, carbonate, fluoride, selenate, and molybdate ions (each at 0.01 mM, 0.1 mM and 1 mM) was evaluated. Fe3O4 enhanced the adsorption of arsenate as well as phosphate, molybdate, dichromate and selenate. With the exception of nitrate, individually competing ions at low concentration (0.01 mM) did not significantly inhibit As(V) sorption onto BC-Fe. The presenceof ten different ions in low concentrations (0.01 mM) did not exert much influence and BC-Fe’s preference for arsenate, and removal remained above 90%. The batch and column BC and BC-Fe adsorption capacities and their ability to provide safe drinking water were evaluated using a naturally contaminated tap water (165 ± 5 mg/L As). A 960 mL volume (203.8 Bed Volumes) of As-free drinking water was collected from a 1 g BC-Fe fixed bed. Adsorbent regeneration was attempted with (NH4)2SO4, KOH, or K3PO4 (1 M) strippers. Potassium phosphate performed the best for BC-Fe regeneration. Safe disposal options for the exhausted adsorbents are proposed. Adsorbents and their As-laden analogues (from single and multicomponent mixtures) were characterized using high resolution XPS and possible competitive interactions and adsorption pathways and attractive interactions were proposed including electrostatic attractions, hydrogen bonding and weak chemisorption to BC phenolics. Stoichiometric precipitation of metal (Mg, Ca and Fe) oxyanion (phosphate, molybdate, selenate and chromate) insoluble compounds is considered. The use of a packed BC-Fe cartridge to provide As-free drinking water is presented for potential commercial use. BC-Fe is an environmentally friendly and potentially cost-effective adsorbent to provide arsenicfree household water. 
650 |2 Agrovoc  |9 26 
653 |a BAMBOO BIOCHAR 
653 |a LATIN AMERICA 
653 |a ARSENIC 
653 |a BREAKTHROUGH 
653 |a COMPETITIVE 
653 |a XPS 
653 |a IRON LEACHIN 
700 1 |9 37868  |a Alchouron, Jacinta  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Botánica General. Buenos Aires, Argentina. 
700 1 |a Navarathna, Chanaka M.  |u Mississippi State University. Department of Chemistry. Mississippi State, USA.  |9 73848 
700 1 |a Rodrigo, Prashan M.  |u Mississippi State University. Department of Chemistry. Mississippi State, USA.  |9 74211 
700 1 |a Snyder, Annie  |u Mississippi State University. Department of Chemistry. Mississippi State, USA.  |9 74213 
700 1 |a Chludil, Hugo Daniel  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedra de Química de Biomoléculas. Buenos Aires, Argentina.  |9 44442 
700 1 |9 37869  |a Vega, Andrea Susana  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Botánica General. Buenos Aires, Argentina.  |u CONICET. Buenos Aires, Argentina. 
700 1 |a Bosi, Gianpiero  |u Universidad de Buenos Aires. Facultad de Arquitectura, Diseño y Urbanismo. Centro de Proyecto, Diseño, y Urbanismo (CEPRODIDE). Buenos Aires, Argentina.  |9 74214 
700 1 |a Pérez, Felio  |u University of Memphis. Material Science Lab, Integrated Microscopy Center. Memphis, USA.  |9 73853 
773 |t Journal of Colloid and Interface Science  |g Vol.587 (2021),p.767–779, grafs. 
856 |x ARTI202210  |f 2021alchouron  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021alchouron.pdf 
856 |u https://www.elsevier.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG