Opportunities drive the global distribution of protected areas

Background. Protected areas, regarded today as a cornerstone of nature conservation, result from an array of multiple motivations and opportunities. We explored at global and regional levels the current distribution of protected areas along biophysical, human, and biological gradients, and assessed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Baldi, Germán, Texeira, Marcos, Martin, Osvaldo A., Grau, Héctor Ricardo, Jobbágy, Esteban G.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2017baldi.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04380nab a22004457a 4500
001 20180614113310.0
003 AR-BaUFA
005 20230516095056.0
008 180614t2017 xxk|||||o|||| 00| | eng d
999 |c 45608  |d 45608 
999 |d 45608 
999 |d 45608 
999 |d 45608 
999 |d 45608 
999 |d 45608 
999 |d 45608 
999 |d 45608 
999 |d 45608 
022 |a 2167-8359 
024 |a 10.7717/peerj.2989 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Opportunities drive the global distribution of protected areas 
520 |a Background. Protected areas, regarded today as a cornerstone of nature conservation, result from an array of multiple motivations and opportunities. We explored at global and regional levels the current distribution of protected areas along biophysical, human, and biological gradients, and assessed to what extent protection has pursued (i) a balanced representation of biophysical environments, (ii) a set of preferred conditions (biological, spiritual, economic, or geopolitical), or (iii) existing opportunities for conservation regardless of any representation or preference criteria. Methods. We used histograms to describe the distribution of terrestrial protected areas along biophysical, human, and biological independent gradients and linear and nonlinear regression and correlation analyses to describe the sign, shape, and strength of the relationships. We used a random forest analysis to rank the importance of different variables related to conservation preferences and opportunity drivers, and an evenness metric to quantify representativeness. Results. Wefind that protection at a global level is primarily driven by the opportunities provided by isolation and a low population density (variable importance D 34.6 and 19.9, respectively). Preferences play a secondary role, with a bias towards tourism attractiveness and proximity to international borders (variable importance D 12.7 and 3.4, respectively). Opportunities shape protection strongly in ``North America & Australia - NZ'' and ``Latin America & Caribbean,'' while the importance of the representativeness of biophysical environments is higher in ``Sub-Saharan Africa'' (1.3 times the average of other regions). Discussion. Environmental representativeness and biodiversity protection are top priorities in land conservation agendas. However, our results suggest that they have been minor players driving current protection at both global and regional levels. Attempts to increase their relevance will necessarily have to recognize the predominant opportunistic nature that the establishment of protected areas has had until present times. 
653 |a PROTECTED AREAS 
653 |a NATIONAL PARKS 
653 |a CONSERVATION PARADIGMS 
653 |a REPRESENTATIVENESS 
653 |a OPPORTUNITY 
653 |a PREFERENTIALITY 
700 1 |9 26877  |a Baldi, Germán  |u Universidad Nacional de San Luis. Instituto de Matemática Aplicada. San Luis, Argentina.  |u CONICET. San Luis, Argentina. 
700 1 |9 32541  |a Texeira, Marcos  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Martin, Osvaldo A.  |u Universidad Nacional de San Luis. Instituto de Matemática Aplicada. San Luis, Argentina.  |u CONICET. San Luis, Argentina.  |9 67375 
700 1 |a Grau, Héctor Ricardo  |u Universidad Nacional de Tucumán. Instituto de Ecología Regional. Tucumán, Argentina.  |u CONICET. Horco Molle, Tucumán, Argentina.  |9 49455 
700 1 |a Jobbágy, Esteban G.  |u Universidad Nacional de San Luis. Instituto de Matemática Aplicada. San Luis, Argentina.  |u CONICET. San Luis, Argentina.  |9 7390 
773 0 |t PeerJ  |g Vol.5 (2017), e2989, 24 p., grafs., tbls., mapas 
856 |f 2017baldi  |i en internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2017baldi.pdf  |x ARTI201806 
856 |z LINK AL EDITOR  |u https://www.peerj.com 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG