Principles of paleontology /

Detalles Bibliográficos
Autor principal: Foote, Michael
Otros Autores: Miller, Arnold I.
Formato: Desconocido
Lenguaje:Español
Publicado: New York : Freeman , 2007.
Edición:3rd ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 078210000a22002770004500
003 WAA
005 20211215092451.0
006 a||||fr|||| 001 0
007 ta
008 t ag-|||||r|||| 001 0 spa d
020 |a 9780716706137 
040 |c WAA  |a WAA 
041 |a spa 
100 1 |a Foote, Michael  |9 15451 
245 1 0 |a Principles of paleontology /  |c Michael Foote and Arnold I. Miller 
250 |a 3rd ed. 
260 |a New York :   |b Freeman ,   |c 2007. 
300 |a 354 p. :   |b grafs. ;   |c 29 cm. 
500 |a Incluye índice analítico 
505 |a 1. The Nature of the Fossil Record. 1.1. Nature and scope of paleontology -- 1.2. Fossil preservation -- General considerations -- Modes of fossilizarion -- Pseudofossils and artifacts -- Taphonomy -- Live-dead comparisons -- Exceptional preservation -- 1.3. Sampling of the fossil record box -- Rarefaction method -- Measuring completeness of the fossil record -- selected measures of paleontological completeness -- 1.4. Temporal changes in the nature of the fossil record -- Bioturbation -- Skeletal mineralogy -- Geographic and environmental distribution f fossiliferous rocks -- 1.5. Growth of our knowledge of the fossil record -- 2. Growth and Form. 2.1. Aspect of form -- 2.2. Describing and measuring specimens -- Pictorial description -- Descriptive terminology - Description by measurement -- Cenroid size and shape coordinates -- Harmonic analysis -. 2.3. The nature of growth and development -- Types of growth -- Describing ontogenetic change -- Growth rates -- Reasons for anisometric growth -- Allometric growth -- Other allometric relationships -- Testing an allometric hypothesis with an ordovician echinoderm -- Heterochrony -- 3. Populations and Species. 3.1. Population in biology and paleontology -- Variation among individuals within populations -- 3.2. Describing variation -- Descriptive statistics -- Describing variation in one dimension -- Describing variation in two or more dimensions -- Cluster analysis -- 3.3. The biological nature of species -- The biologic species concept -- The origin of species -- Discrimination of species -- Morphologic and biologic species -- Testing for diagnostic genetic differences between populations -- 4. Systematics. 4.1. Formal naming and description of species -- Stenoscisma pytaustoides cooper and Grant -- Diplocaubus parvus Olson, n. sp. -- Presentation of taxonomic names -- Namacalathus hermanastes Grotzinger, Watters and Knoll, n. gen. n. sp. -- Changing species names -- Importance of taxonomic procedure -- Synonymy of Archaeocidaris rossica -- 4.2. Phylogenetics -- Cladograms and trees -- Shared novelties and evolutionary relationships -- Inferring relationships from morphological characers -- Character distribution and inconsistencies in data -- Phylogenetic inference with unplarized characters -- Accuracy of estimated phylogenies -- Other approaches -- Maximum-likelihood estimation of phylogeny -- The temporal dimension in genealogy -- Tree construction in a sample of arbaciuod echinoids -- Stratocladistics -- 4.3. Classification -- Nature of higher categories -- Inclusiveness and rank -- Paraphyletic taxa in paleontology -- 5. Evolutionary Morphology. 5.1. Adaptation and other underlying assumptions -- 5.2. Functional morphology -- Approaches to functional morphological analysis -- Examples of biomechanical analysis of extinct organisms -- Locomotion in nonavian dinosaurs -- Other lines of evidence in functional interpretation -- 5.3. Theoretcal morphology - Exploring alternative modes of life -- Estimating coiling parameters -- Trade-offs and limits to optimality -- Trade-offs as a source of multiple adaptive modes -- Phenotypic change and underlying genetic factors -- 6. Biostratigraphy. 6.1. The nature of biostratigraphic data and correlation -- 6.2. Compsite methods of correlation -- Graphic correlation -- Appearance event ordination -- Constrained optimization and ranking and scaling -- 6.3. Regional correlation with gradient analysis -- 6.4. Sequence stratigraphy and the distribution of fossils -- High-resolution correlation with gradient analysis -- The anatomy of a sequence -- Additional aspects of Holland's model -- 6.5. Confidence limits on stratigraphic ranges -- 7. Evolutionary Rates and Trends. 7.1. Morphological rates -- Nature and measurement of morphological rates -- Temporal scaling of morphological rates -- 7.2. Taxonomic rates -- Long-term characteristic rates for a biologic group -- Genus survivorship - Estimating taxonomic rates with incomplete sampling -- Taxonomic rate measures within a time interval -- Interval rates -- Determinaition of taxonomic rates -- 7..3. Relationships between morphological and taxonomic evolution -- Macroevolution and the importance of tempo and mode in paleontology -- Testing for punctuated equilibrium -- A case study: negene caribbean bryozoans -- Operational test for punctuated equilibrium -- Mechanism of stasis -- Mechanisms of puntuated change -- 7.4. Evolutionary trends -- Tests for persistent directionality -- Testing for directonality of evolutionary sequences -- Mechanisms of phylogenetic trends -- 8. Global Diversity and Extinctions. 8.1. The nature of biological diversity -- 8.2. Global taxonomic databases -- 8.3. Construction of global diversity cruves -- 8.4. Phanerozoic transitions in taxonomic composition -- The marine reals -- Development of the coupled logistic model -- 8.5. Phanerozoic decline in origination and extinction rates -- 8.6. Mass extinctions -- The diagnosis of mass extinctions -- Causes of mass extinctions -- Selectivity of mass extinctions -- 8.7. The next generation of paleontological databases -- 8.8. Dissecting diversification and recoveries from mass extinctions -- The ordovician radiation -- Regional marine cenozoic transitions in tropical America -- Recoveries from mass extinctions -- 8.9. A schematic overview of biological transitions -- 8.10. Measuring disparity -- 9. Paleoecology and Paleobiogeography. 9.1. The nature of paleoecological data -- Determining the number of individuas in a sample of fragmented or clonal skeletal elements -- 9.2. Communities -- 9.3. Paleocommunities -- Distributions of fossil taxa within and among paleocommunities -- Gradient analysis in the fossil record -- Regional stratigraphic distributions of fossil taxa -- 9.4. Evolutionary paleoecology -- Ecospace utilization through time -- Evolutionary transitions associated with ecological interactions -- Onshore-offshore patterns of diversifications -- Ecological interactions and mass extinctions -- 9.5. New approaches to paleoenvironmental and paleoclimatic reconstruction δ18O and the Mg/Ca ratio -- Paleoclimatic and paleoatmospheric estimates from fossil plants -- 9.6. Paleobiogeography -- 10. Multidisciplinary Studies in Paleontology. 10.1. Paleontology as an integrative science -- 10.2.The cambrian explotion of marine life -- The fossil record -- Evolutionary interpretation of cambrian events -- Reasons for the cambrian explosion -- 10.3. The late permian extinction -- Timing of extinctions -- Environmental change, biogeography and extinction mechanisms -- 10.4. The paleocene-eocene thermal maximun -- Causes of the PETM -- Biological effects -- 10.5.Pleistocene megafaunal extinctions The nature of late pleistocene extinctions -- The role of humans in megafaunal extinction -- 10.6. Conservation paleobiology -- 10.7. Astrobiology. 
650 0 |a Paleontología  |9 5693 
700 |a Miller, Arnold I.  |9 15452 
942 |2 CDU  |c LIBRO 
999 |c 4905  |d 4905 
952 |0 0  |1 0  |2 CDU  |4 0  |6 56_000000000000000_F7399  |7 0  |9 11140  |a 04  |b 04  |d 2018-04-09  |l 0  |o 56 F7399  |p 32-02161  |r 2018-04-09  |w 2018-04-09  |y LIBRO 
952 |0 0  |1 0  |2 CDU  |4 0  |6 56_000000000000000_F7399  |7 0  |9 11141  |a 04  |b 04  |d 2018-04-09  |l 0  |o 56 F7399  |p 32-01671  |r 2018-04-09  |w 2018-04-09  |y LIBRO NPP