Modificación redox de superficies para electrónica molecular y electrocatálisis

La comprensión y control del transporte de carga a través de películas orgánicas de un espesor nanométrico es de fundamental importancia en diferentes áreas de investigación aplicada como ser la electrónica molecular, el desarrollo de sensores y biosensores, la protección contra la corrosión, la ele...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ricci, Alejandra Marcela
Formato: Tesis Doctoral
Lenguaje:Español
Publicado: 2010
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12110/tesis_n4695_Ricci
Aporte de:
Descripción
Sumario:La comprensión y control del transporte de carga a través de películas orgánicas de un espesor nanométrico es de fundamental importancia en diferentes áreas de investigación aplicada como ser la electrónica molecular, el desarrollo de sensores y biosensores, la protección contra la corrosión, la electrocatálisis y la fotoconversión solar, entre otras. El conocimiento de cómo la composición y la estructura química pueden afectar la transferencia electrónica entre un sustrato sólido y una molécula electroactiva es central en el desarrollo de las mismas. En esta tesis el objetivo principal consistió en el estudio de fenómenos de transferencia electrónica (TE) y para ello se prepararon una serie de sistemas modelo basados en electrodos modificados con monocapas electroactivas. Éstos se obtuvieron por unión del complejo [Os(2,2 ́‐bpy)2Cl(py‐CH2‐NH2)]+ a monocapas previamente depositadas sobre electrodos de oro, que se formaron por adsorción de tioles alifáticos de diferentes longitudes de cadena, un tiol aromático y por electro‐reducción de sales de diazonio. De esta manera se obtuvieron dos formas de unión a la superficie: Au‐S y Au‐C, respectivamente. Además, en todos los casos, las moléculas depositadas presentaron grupos ácidos que reaccionaron con el grupo amino del complejo en una reacción de post‐funcionalización. Así se obtuvieron sistemas en los que el par Os(II)/Os(III) se encuentra unido a la superficie de un electrodo de oro a través de puentes moleculares de diferentes longitudes y naturaleza. Todos ellos se caracterizaron superficialmente empleando espectroscopías infrarrojas (PM‐IRRAS y FT‐IRRAS), espectroscopía Raman resonante, espectroscopía fotoelectrónica de rayos X y microscopía de efecto túnel y se observó que el complejo se une a la superficie sin perder su integridad química, formando efectivamente monocapas electroactivas. La caracterización electroquímica se llevó a cabo por voltametría cíclica y, en particular, en los estudios de cinética de transferencia electrónica, se empleó principalmente espectroscopía de impedancia electroquímica. Los sistemas obtenidos con tioles alifáticos de diferentes longitudes mostraron un mecanismo de TE consistente con tuneleo a través del enlace. Los sistemas obtenidos a partir de la reducción de sales de diazonio y con el tiol aromático presentaron velocidades de TE comparables. Finalmente, se analizaron por espectroscopía de efecto túnel con control electroquímico dos de los sistemas aromáticos que se diferencian únicamente en el tipo de unión al sustrato de oro (Au‐C y Au‐S) observándose, en ambos casos, un mecanismo de TE en dos pasos, entre la molécula y los contactos, con relajación vibracional parcial del centro redox.