Variability at low frequencies with wavelet transform and empirical mode decomposition: Aplication to climatological series
The aim of this study is to detect variability at low frequencies and trend of time series connected with climate using two different processing techniques. In previous work the wavelet transform and models of pure oscillations with statistical parameter setting were applied to the series of surface...
Guardado en:
Autores principales: | Zitto, M.E., Piotrkowski, R., Barrucand, M., Canziani, P. |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_97814673_v_n_p_Zitto |
Aporte de: |
Ejemplares similares
-
Variability at low frequencies with wavelet transform and empirical mode decomposition: Aplication to climatological series
por: Zitto, Miguel Eduardo, et al.
Publicado: (2016) -
Decomposition Methods for Machine Learning with Small, Incomplete or Noisy Datasets
por: Caiafa, Cesar Federico
Publicado: (2020) -
Historical SAM index time series: linear and nonlinear analysis
por: Barrucand, M.G., et al. -
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
por: Mininni, Pablo Daniel
Publicado: (2012) -
Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
por: Lord, J.W., et al.
Publicado: (2012)