Improving robustness of speaker recognition to new conditions using unlabeled data
Unsupervised techniques for the adaptation of speaker recognition are important due to the problem of condition mismatch that is prevalent when applying speaker recognition technology to new conditions and the general scarcity of labeled 'in-domain' data. In the recent NIST 2016 Speaker Re...
Guardado en:
Autores principales: | Castan, D., McLaren, M., Ferrer, L., Lawson, A., Lozano-Diez, A., Lacerda F., Strombergsson S., Wlodarczak M., Heldner M., Gustafson J., House D. |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_2308457X_v2017-August_n_p3737_Castan |
Aporte de: |
Ejemplares similares
-
Improving robustness of speaker recognition to new conditions using unlabeled data
Publicado: (2017) -
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option
por: Ferrer, L., et al. -
On the issue of calibration in DNN-based speaker recognition systems
por: McLaren, M., et al. -
On the issue of calibration in DNN-based speaker recognition systems
Publicado: (2016) -
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option
Publicado: (2019)