Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses

Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a 'critical period' of developme...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johnson, S.L., Wedemeyer, C., Vetter, D.E., Adachi, R., Holley, M.C., Elgoyhen, A.B., Marcotti, W.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_20462441_v3_nNOV_p_Johnson
Aporte de:
Descripción
Sumario:Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a 'critical period' of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent fibres descending from the brainstem, which transiently innervate immature IHCs. However, it remains unknown whether this transient efferent input to developing IHCs is required for their functional maturation. We used a mouse model that lacks the a9-nicotinic acetylcholine receptor subunit (a9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent terminals to remove or reduce efferent input to IHCs, respectively. We found that the efferent system is required for the developmental linearization of the Ca2p-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their general cell development. This provides the first direct evidence that the efferent system, by modulating IHC electrical activity, is required for the maturation of the IHC synaptic machinery. The central control of sensory cell development is unique among sensory systems. © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License.