Upper bounds for the decay rate in a nonlocal p-Laplacian evolution problem
We obtain upper bounds for the decay rate for solutions to the nonlocal problem λtu(x, t) = ∫ℝn J(x, y)|u(y, t) - u(x, t)|p-2(u(y, t) - u(x, t)) dy with an initial condition u0 ε L1(ℝn) ∩ L(Rn) and a fixed p > 2. We assume that the kernel J is symmetric, bounded (and therefore there is no reg...
Guardado en:
Autores principales: | Esteve, C., Rossi, J.D., Antolin, A.S. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16872762_v2014_n_p_Esteve |
Aporte de: |
Ejemplares similares
-
Upper bounds for the decay rate in a nonlocal p-Laplacian evolution problem
por: Rossi, Julio Daniel
Publicado: (2014) -
Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions
por: Ferreira, R., et al. -
Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions
por: Rossi, Julio Daniel
Publicado: (2015) -
Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space
por: Ignat, L.I., et al. -
Decay bounds for nonlocal evolution equations in Orlicz spaces
por: Kaufmann, U., et al.