Finite dissipation and intermittency in magnetohydrodynamics

We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 15363 points and up to Taylor Reynolds number of ∼1200. The initial conditions are such that the initial velocity and magnetic fields are helical and in equipa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mininni, P.D., Pouquet, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15393755_v80_n2_p_Mininni
Aporte de:
Descripción
Sumario:We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 15363 points and up to Taylor Reynolds number of ∼1200. The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. © 2009 The American Physical Society.