Theoretical study of magnetic properties of ammonia molecule in nonuniform magnetic field
The interaction Hamiltonian within the Bloch gauge for the potentials of the electromagnetic field has been used to define magnetic multipole moment operators and operators for the magnetic field of electrons acting on the nuclei of a molecule in the presence of nonhomogeneous external magnetic fiel...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1432881X_v94_n3_p155_Caputo |
Aporte de: |
Sumario: | The interaction Hamiltonian within the Bloch gauge for the potentials of the electromagnetic field has been used to define magnetic multipole moment operators and operators for the magnetic field of electrons acting on the nuclei of a molecule in the presence of nonhomogeneous external magnetic field. Perturbation theory has been applied to evaluate the induced electronic moments and magnetic field at the nuclei. Multipole magnetic susceptibility and nuclear magnetic shielding tensors have been introduced to describe the contributions arising in nonuniform fields, and their origin dependence has been analyzed. Extended numerical tests on the ammonia molecule in a static, nonuniform magnetic field have been carried out, using the random-phase approximation within the framework of accurate Hartree-Fock zero-order wavefunctions, and allowing for both angular momentum and torque formalisms in the calculation of paramagnetic contributions. |
---|