The limit as {Mathematical expression} for the eigenvalue problem of the 1-homogeneous {Mathematical expression}-Laplacian
In this paper we study asymptotics as {Mathematical expression} of the Dirichlet eigenvalue problem for the {Mathematical expression}-homogeneous {Mathematical expression}-Laplacian, that is, {Mathematical expression}Here {Mathematical expression} is a bounded starshaped domain in {Mathematical expr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | INPR |
Lenguaje: | English |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_11391138_v_n_p1_MartinezAparicio |
Aporte de: |
Sumario: | In this paper we study asymptotics as {Mathematical expression} of the Dirichlet eigenvalue problem for the {Mathematical expression}-homogeneous {Mathematical expression}-Laplacian, that is, {Mathematical expression}Here {Mathematical expression} is a bounded starshaped domain in {Mathematical expression} and {Mathematical expression}. There exists a principal eigenvalue {Mathematical expression}, which is positive, and has associated a non-negative nontrivial eigenfunction. Moreover, we show that {Mathematical expression}, where {Mathematical expression} is the first eigenvalue corresponding to the {Mathematical expression}-homogeneous infinity Laplacian, that is, {Mathematical expression}. © 2013 Universidad Complutense de Madrid. |
---|