The limit as {Mathematical expression} for the eigenvalue problem of the 1-homogeneous {Mathematical expression}-Laplacian

In this paper we study asymptotics as {Mathematical expression} of the Dirichlet eigenvalue problem for the {Mathematical expression}-homogeneous {Mathematical expression}-Laplacian, that is, {Mathematical expression}Here {Mathematical expression} is a bounded starshaped domain in {Mathematical expr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martínez-Aparicio, P.J., Pérez-Llanos, M., Rossi, J.D.
Formato: INPR
Lenguaje:English
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_11391138_v_n_p1_MartinezAparicio
Aporte de:
Descripción
Sumario:In this paper we study asymptotics as {Mathematical expression} of the Dirichlet eigenvalue problem for the {Mathematical expression}-homogeneous {Mathematical expression}-Laplacian, that is, {Mathematical expression}Here {Mathematical expression} is a bounded starshaped domain in {Mathematical expression} and {Mathematical expression}. There exists a principal eigenvalue {Mathematical expression}, which is positive, and has associated a non-negative nontrivial eigenfunction. Moreover, we show that {Mathematical expression}, where {Mathematical expression} is the first eigenvalue corresponding to the {Mathematical expression}-homogeneous infinity Laplacian, that is, {Mathematical expression}. © 2013 Universidad Complutense de Madrid.