Existence of solutions to N-dimensional pendulum-like equations
We study the elliptic boundary-value problem Δu + g(x, u) = p(x) in Ω u| ∂Ω = constant, ∫ ∂Ω ∂u/∂ν = 0, where g is T-periodic in u, and Ω ⊂ ℝ n is a bounded domain. We prove the existence of a solution under a condition on the average of the forcing term p. Also, we prove the existence of a compact...
Guardado en:
Autores principales: | Amster, P., De Nápoli, P.L., Mariani, M.C. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2004_n_p1_Amster |
Aporte de: |
Ejemplares similares
-
Existence of solutions to N-dimensional pendulum-like equations
por: Amster, Pablo Gustavo, et al.
Publicado: (2004) -
Some results on the forced pendulum equation
por: Amster, P., et al. -
An n-dimensional pendulum-like equation via topological methods
por: Amster, P., et al. -
Some results on the forced pendulum equation
por: Amster, Pablo Gustavo, et al.
Publicado: (2008) -
A system of coupled pendulii
por: Amster, P., et al.