Improved explicit estimates on the number of solutions of equations over a finite field
We show explicit estimates on the number of q-ratinoal points of an Fq-definable affine absolutely irreducible variety of F̄qn. Our estimates for a hypersurface significantly improve previous estimates of W. Schmidt and M.-D. Huang and Y.-C. Wong, while in the case of a variety our estimates improve...
Guardado en:
Autores principales: | Cafure, A., Matera, G. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10715797_v12_n2_p155_Cafure |
Aporte de: |
Ejemplares similares
-
Improved explicit estimates on the number of solutions of equations over a finite field
por: Cafure, A., et al.
Publicado: (2006) -
Improved explicit estimates on the number of solutions of equations over a finite field
por: Cafure, A., et al.
Publicado: (2006) -
Improved explicit estimates on the number of solutions of equations over a finite field
por: Cafure, Antonio Artemio, et al.
Publicado: (2006) -
An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field
por: Cafure, A., et al.
Publicado: (2007) -
An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field
por: Cafure, A., et al.