Robust nonlinear principal components
All known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=...
Guardado en:
Autores principales: | Maronna, R.A., Méndez, F., Yohai, V.J. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09603174_v25_n2_p439_Maronna |
Aporte de: |
Ejemplares similares
-
Robust nonlinear principal components
Publicado: (2013) -
Asymptotic theory for robust principal components
por: Boente, Graciela Lina
Publicado: (1987) -
Asymptotic theory for robust principal components
por: Boente, G. -
Robust functional principal component analysis
por: Bali, J.L., et al. -
Robust functional principal component analysis
Publicado: (2014)