Exploring the molecular basis of action of ring D aromatic steroidal antiestrogens

Salpichrolides are natural plant steroids that contain an unusual six-membered aromatic ring D. We recently reported that some of these compounds, and certain analogs with a simplified side chain, exhibited antagonist effects toward the human estrogen receptor (ER), a nuclear receptor whose endogeno...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alvarez, L.D., Veleiro, A.S., Burton, G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_08873585_v83_n7_p1297_Alvarez
Aporte de:
Descripción
Sumario:Salpichrolides are natural plant steroids that contain an unusual six-membered aromatic ring D. We recently reported that some of these compounds, and certain analogs with a simplified side chain, exhibited antagonist effects toward the human estrogen receptor (ER), a nuclear receptor whose endogenous ligand has an aromatic A ring (estradiol). Drugs acting through the inhibition or modulation of ERs are frequently used as a hormonal therapy for ER(+) breast cancer. Previous results suggested that the aromatic D ring was a key structural motif for the observed activity; thus, this modified steroid nucleus may provide a new scaffold for the design of novel antiestrogens. Using molecular dynamics (MD) simulation we have modeled the binding mode of the natural salpichrolide A and a synthetic analog with an aromatic D ring within the ERα. These results taken together with the calculated energetic contributions associated to the different ligand-binding modes are consistent with a preferred inverted orientation of the steroids in the ligand-binding pocket with the aromatic ring D occupying a position similar to that observed for the A ring of estradiol. Major changes in both dynamical behavior and global positioning of H11 caused by the loss of the ligand-His524 interaction might explain, at least in part, the molecular basis of the antagonism exhibited by these compounds. Using steered MD we also found a putative unbinding pathway for the steroidal ligands through a cavity formed by residues in H3, H7, and H11, which requires only minor changes in the overall receptor conformation. © 2015 Wiley Periodicals, Inc..