A generalization of Toeplitz operators on the Bergman space
If μ is a finite measure on the unit disc and k ≥ 0 is an integer, we study a generalization derived from Engliš's work, T<inf>μ</inf>(k) m, of the traditional Toeplitz operators on the Bergman space A2, which are the case k = 0. Among other things, we prove that when μ ≥ 0, these o...
Guardado en:
Autor principal: | Suárez, D. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03794024_v73_n2_p315_Suarez |
Aporte de: |
Ejemplares similares
-
A generalization of Toeplitz operators on the Bergman space
Publicado: (2015) -
The Essential Norm of Operators on Apα(Bn)
por: Mitkovski, M., et al. -
The Essential Norm of Operators on Apα(Bn)
Publicado: (2013) -
The Toeplitz algebra on the Bergman space coincides with its commutator ideal
por: Suárez, D. -
The Toeplitz algebra on the Bergman space coincides with its commutator ideal
Publicado: (2004)