The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences

The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl−-rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tassi, F., Vaselli, O., Tempesti, L., Caponi, C.
Formato: JOUR
Materias:
Air
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03770273_v328_n_p198_Tassi
Aporte de:
Descripción
Sumario:The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl−-rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a hydrothermal reservoir located at relative shallow depth (400–600 m) possibly connected to a second deeper (2–3 km) reservoir. Reactive magmatic gases are completely scrubbed by the hydrothermal aquifer(s), whereas interaction of meteoric waters at the surface causes a significant air contamination and dilution of the fluid discharges located along the creeks at the foothill of the Cerro Domuyo edifice. Thermal discharges located at relatively high altitude (~ 3150 m a.s.l.), namely Bramadora, are less affected by this process, as also shown by their relatively high R/Ra values (up to 6.91) pointing to the occurrence of an actively degassing magma batch located at an unknown depth. Gas and solute geothermometry suggests equilibrium temperatures up to 220–240 °C likely referred to the shallower hydrothermal reservoir. These results, confirming the promising indications of the preliminary surveys carried out in the 1980′s, provide useful information for a reliable estimation of the geothermal potential of this extinct volcanic system, although a detailed geophysical measurements is required for the correct estimation of depth and dimensions of the fluid reservoir(s). © 2016 Elsevier B.V.