Fractional problems in thin domains
In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂R n and V⊂R m , we show that the solution u ε to Δ x s u ε (x,y)+Δ y t u ε (x,y)=f(x,ε −1 y)inU×εV with u ε (x,y)=0 if x⁄∈U and y∈εV, verifies that ũ ε (x,y)≔u ε (x,εy)→u 0 strongly in the natural fr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v_n_p_Pereira |
Aporte de: |
Sumario: | In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂R n and V⊂R m , we show that the solution u ε to Δ x s u ε (x,y)+Δ y t u ε (x,y)=f(x,ε −1 y)inU×εV with u ε (x,y)=0 if x⁄∈U and y∈εV, verifies that ũ ε (x,y)≔u ε (x,εy)→u 0 strongly in the natural fractional Sobolev space associated to this problem. We also identify the limit problem that is satisfied by u 0 and estimate the rate of convergence in the uniform norm. Here Δ x s u and Δ y t u are the fractional Laplacian in the 1st variable x (with a Dirichlet condition, u(x)=0 if x⁄∈U) and in the 2nd variable y (with a Neumann condition, integrating only inside V), respectively, that is, Δ x s u(x,y)=∫ R n [Formula presented]dw and Δ y t u(x,y)=∫ V [Formula presented]dz. © 2019 Elsevier Ltd |
---|