The best Sobolev trace constant in a domain with oscillating boundary

In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernández Bonder, J., Orive, R., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v67_n4_p1173_FernandezBonder
Aporte de:
Descripción
Sumario:In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations. © 2006 Elsevier Ltd. All rights reserved.