Characterizations and linear time recognition of helly circular-arc graphs
A circular-arc model (C, A) is a circle C together with a collection A of arcs of C. If A satisfies the Helly Property then (C, A) is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been...
Guardado en:
Autores principales: | , |
---|---|
Formato: | SER |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03029743_v4112LNCS_n_p73_Lin |
Aporte de: |
Sumario: | A circular-arc model (C, A) is a circle C together with a collection A of arcs of C. If A satisfies the Helly Property then (C, A) is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention, in the literature. Linear time recognition algorithm have been described both for the general class and for some of its subclasses. However, for Helly circular-arc graphs, the best recognition algorithm is that by Gavril, whose complexity is O(n3). In this article, we describe different characterizations for Helly circular-arc graphs, including a characterization by forbidden induced subgraphs for the class. The characterizations lead to a linear time recognition algorithm for recognizing graphs of this class. The algorithm also produces certificates for a negative answer, by exhibiting a forbidden subgraph of it, within this same bound. © Springer-Verlag Berlin Heidelberg 2006. |
---|