Landmine detection using IR image segmentation by means of fractal dimension analysis
This work is concerned with buried landmines detection by long wave infrared images obtained during the heating or cooling of the soil and a segmentation process of the images. The segmentation process is performed by means of a local fractal dimension analysis (LFD) as a feature descriptor. We use...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0277786X_v7303_n_p_Abbate |
Aporte de: |
Sumario: | This work is concerned with buried landmines detection by long wave infrared images obtained during the heating or cooling of the soil and a segmentation process of the images. The segmentation process is performed by means of a local fractal dimension analysis (LFD) as a feature descriptor. We use two different LFD estimators, box-counting dimension (BC), and differential box counting dimension (DBC). These features are computed in a per pixel basis, and the set of features is clusterized by means of the K-means method. This segmentation technique produces outstanding results, with low computational cost. © 2009 SPIE. |
---|