Optical generation of many-spin entangled states in a quantum well
A quantum-mechanical many-particle system may exhibit non-local behavior in that measurements performed on one of the particles can affect a second one that is far apart. These so-called entangled states are crucial for the implementation of quantum information protocols and gates for quantum comput...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0277786X_v5472_n_p200_Merlin |
Aporte de: |
Sumario: | A quantum-mechanical many-particle system may exhibit non-local behavior in that measurements performed on one of the particles can affect a second one that is far apart. These so-called entangled states are crucial for the implementation of quantum information protocols and gates for quantum computation. Here, we use ultrafast optical pulses and coherent techniques to create and control spin entangled states in an ensemble of up to three non-interacting electrons bound to donors in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle an arbitrarily large number of spins. |
---|