Autoscaling scientific workflows on the cloud by combining on-demand and spot instances
Autoscaling strategies achieve efficient and cheap executions of scientific workflows running in the cloud by determining appropriate type and amount of virtual machine instances to use while scheduling the tasks/data. Current strategies only consider on-demand instances ignoring the advantages of a...
Guardado en:
Autores principales: | Monge, D.A., Gari, Y., Mateos, C., Garino, C.G. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02676192_v32_n4_p291_Monge |
Aporte de: |
Ejemplares similares
-
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances
Publicado: (2017) -
Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances
por: Monge, D.A., et al. -
Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances
Publicado: (2017) -
Improving Workflows Execution on DAGMan by a Perfomance-driven Scheduling Tool
por: Monge, David A., et al.
Publicado: (2010) -
A Performance Prediction Module for Workflow Scheduling
por: Monge, David A., et al.
Publicado: (2011)