Effects on light propagating in an electromagnetized vacuum, as predicted by a particular class of scalar-tensor theory of gravitation
The effect of static electromagnetic fields on the propagation of light is analyzed in the context of a particular class of scalar-tensor gravitational theories. It is found that for appropriate field configurations and light polarization, anomalous amplitude variations of the light as it propagates...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02649381_v30_n23_p_Raptis |
Aporte de: |
Sumario: | The effect of static electromagnetic fields on the propagation of light is analyzed in the context of a particular class of scalar-tensor gravitational theories. It is found that for appropriate field configurations and light polarization, anomalous amplitude variations of the light as it propagates in either a magnetized or an electrified vacuum are strong enough to be detectable in relatively simple laboratory experiments. © 2013 IOP Publishing Ltd. |
---|