Numerical blow-up for a nonlinear problem with a nonlinear boundary condition
In this paper we study numerical approximations for positive solutions of a nonlinear heat equation with a nonlinear boundary condition. We describe in terms of the nonlinearities when solutions of a semidiscretization in space exist globally in time and when they blow up in finite time. We also fin...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02182025_v12_n4_p461_Ferreira |
Aporte de: |
Sumario: | In this paper we study numerical approximations for positive solutions of a nonlinear heat equation with a nonlinear boundary condition. We describe in terms of the nonlinearities when solutions of a semidiscretization in space exist globally in time and when they blow up in finite time. We also find the blow-up rates and the blow-up sets. In particular we prove that regional blow-up is not reproduced by the numerical scheme. However, in the appropriate variables we can reproduce the correct blow-up set when the mesh parameter goes to zero. |
---|