Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that...
Guardado en:
Autores principales: | Bonomo, F., Durán, G., Soulignac, F., Sueiro, G. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0166218X_v157_n17_p3511_Bonomo |
Aporte de: |
Ejemplares similares
-
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
por: Bonomo, F., et al.
Publicado: (2009) -
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
por: Bonomo, F., et al.
Publicado: (2009) -
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
por: Bonomo, Flavia, et al.
Publicado: (2009) -
Partial characterizations of clique-perfect and coordinated graphs: superclasses of triangle-free graphs
por: Bonomo, F., et al. -
Partial characterizations of clique-perfect and coordinated graphs: superclasses of triangle-free graphs
por: Bonomo, Flavia, et al.
Publicado: (2008)