The covering type of closed surfaces and minimal triangulations
The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00973165_v166_n_p1_Borghini |
Aporte de: |
Sumario: | The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex homotopy equivalent to X. In this article we compute the covering type of all closed surfaces. Our results completely settle a problem posed by Karoubi and Weibel, and shed more light on the relationship between the topology of surfaces and the number of vertices of minimal triangulations from a homotopy point of view. © 2019 Elsevier Inc. |
---|