On the Structure of μ-Classes

We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an expli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: D'Andrea, C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00927872_v32_n1_p159_DAndrea
Aporte de:
Descripción
Sumario:We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an explicit description of the variety of parametrizations of degree n and class μ, for all (n, μ).