On the Structure of μ-Classes
We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an expli...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00927872_v32_n1_p159_DAndrea |
Aporte de: |
Sumario: | We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an explicit description of the variety of parametrizations of degree n and class μ, for all (n, μ). |
---|