Cohomology and extensions of braces
Braces and linear cycle sets are algebraic structures playing a major role in the classification of involutive set-theoretic solutions to the Yang-Baxter equation. This paper introduces two versions of their (co)homology theories. These theories mix the Harrison (co)homology for the abelian group st...
Guardado en:
Autores principales: | Lebed, V., Vendramin, L. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00308730_v284_n1_p191_Lebed |
Aporte de: |
Ejemplares similares
-
Cohomology and extensions of braces
por: Vendramin, Leandro
Publicado: (2016) -
On skew braces and their ideals
por: Konovalov, A., et al. -
On skew braces and their ideals
Publicado: (2018) -
A characterization of finite multipermutation solutions of the Yang-Baxter equation
por: Bachiller, D., et al. -
Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation
por: Lebed, V., et al.