Computing bases of complete intersection rings in Noether position
Let k be an effective infinite perfect field, k[x1,...,xn] the polynomial ring in n variables and F∈k[x1,...,xn]M×M a square polynomial matrix verifying F2=F. Suppose that the entries of F are polynomials given by a straight-line program of size L and their total degrees are bounded by an integer D....
Guardado en:
Autores principales: | Almeida, M., Blaum, M., D'Alfonso, L., Solernó, P. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00224049_v162_n2-3_p127_Almeida |
Aporte de: |
Ejemplares similares
-
Computing bases of complete intersection rings in Noether position
Publicado: (2001) -
Gröbner bases : a computational approach to commutative algebra
por: Becker, Thomas
Publicado: (1993) -
Computing bases of complete intersection rings in Noether position
por: D’Alfonso, Lisi, et al.
Publicado: (2011) -
Computing bases of complete intersection rings in Noether position /
Publicado: (1999) -
Commutative algebra
Publicado: (1989)