Some remarks on non-symmetric polarization
Let P:Cn→C be an m-homogeneous polynomial given by P(x)=∑1≤j1≤…≤jm≤ncj1…jmxj1…xjm. Defant and Schlüters defined a non-symmetric associated m-form LP:(Cn)m→C by LP(x(1),…,x(m))=∑1≤j1≤…≤jm≤ncj1…jmxj1 (1)…xjm (m). They estimated the norm of LP on (Cn,‖⋅‖)m by the norm of P on (Cn,‖⋅‖) times a (clogn)m...
Guardado en:
Autor principal: | Marceca, F. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v466_n2_p1486_Marceca |
Aporte de: |
Ejemplares similares
-
Some remarks on non-symmetric polarization
Publicado: (2018) -
On the convergence of random polynomials and multilinear forms
Publicado: (2011) -
On the convergence of random polynomials and multilinear forms
por: Carando, D., et al. -
Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
Publicado: (2019) -
Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
por: Carando, D., et al.