A nonlocal nonlinear diffusion equation with blowing up boundary conditions
We deal with boundary value problems (prescribing Dirichlet or Neumann boundary conditions) for a nonlocal nonlinear diffusion operator which is analogous to the porous medium equation. First, we prove existence, uniqueness and the validity of a comparison principle for these problems. Next, we impo...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v337_n2_p1284_Bogoya |
Aporte de: |
Sumario: | We deal with boundary value problems (prescribing Dirichlet or Neumann boundary conditions) for a nonlocal nonlinear diffusion operator which is analogous to the porous medium equation. First, we prove existence, uniqueness and the validity of a comparison principle for these problems. Next, we impose boundary data that blow up in finite time and study the behavior of the solutions. © 2007. |
---|