Isometries between spaces of homogeneous polynomials
We derive Banach-Stone theorems for spaces of homogeneous polynomials. We show that every isometric isomorphism between the spaces of homogeneous approximable polynomials on real Banach spaces E and F is induced by an isometric isomorphism of E′ onto F′. With an additional geometric condition we obt...
Guardado en:
Autores principales: | Boyd, C., Lassalle, S. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00221236_v224_n2_p281_Boyd |
Aporte de: |
Ejemplares similares
-
Isometries between spaces of homogeneous polynomials
por: Boyd, C., et al.
Publicado: (2005) -
Isometries between spaces of homogeneous polynomials
por: Boyd, C., et al.
Publicado: (2005) -
Isometries between spaces of homogeneous polynomials
por: Lassalle, Silvia Beatriz
Publicado: (2005) -
M-Structures in vector-valued polynomial spaces
por: Dimant, V., et al. -
The set of partial isometries as a quotient Finsler space
por: Andruchow, Esteban
Publicado: (2024)