Complexation at the edges of hydrotalcite: The cases of arsenate and chromate

Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a hig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jobbágy, M., Regazzoni, A.E.
Formato: JOUR
Materias:
pH
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00219797_v393_n1_p314_Jobbagy
Aporte de:
Descripción
Sumario:Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a higher value. Chloride ions inhibit the uptake of both anions, the amount of sorbed CrO42- declining rapidly to zero. The uptake of HAsO42-, however, attains a constant value at high chloride concentrations. The excess of arsenate uptake follows, at constant pH, a langmuirian dependence with equilibrium concentration and decreases with increasing pH, depicting a marked change in slope at pHpQa3. CrO42- and HAsO42- have notable, albeit different, effects on the electrophoretic behavior of hydrotalcite; the positive particle charge is screened almost completely by CrO42-, whereas sorption of HAsO42- produces charge reversal. These results reflect the formation of inner-sphere arsenate surface complexes at the edges of hydrotalcite particles. The underlying rationale is discussed in terms of the crystal structure of hydrotalcite surfaces. © 2012 Elsevier Inc.