On the shape of possible counterexamples to the Jacobian Conjecture
We improve the algebraic methods of Abhyankar for the Jacobian Conjecture in dimension two and describe the shape of possible counterexamples. We give an elementary proof of the result of Heitmann in [5], which states that gcd(deg(P),deg(Q))≥16 for any counterexample (P,Q). We also prove that gcd...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v471_n_p13_Valqui |
Aporte de: |
id |
todo:paper_00218693_v471_n_p13_Valqui |
---|---|
record_format |
dspace |
spelling |
todo:paper_00218693_v471_n_p13_Valqui2023-10-03T14:21:34Z On the shape of possible counterexamples to the Jacobian Conjecture Valqui, C. Guccione, J.A. Guccione, J.J. Jacobian Conjecture Minimal counterexample We improve the algebraic methods of Abhyankar for the Jacobian Conjecture in dimension two and describe the shape of possible counterexamples. We give an elementary proof of the result of Heitmann in [5], which states that gcd(deg(P),deg(Q))≥16 for any counterexample (P,Q). We also prove that gcd(deg(P),deg(Q))≠2p for any prime p. © 2016 Elsevier Inc. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v471_n_p13_Valqui |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Jacobian Conjecture Minimal counterexample |
spellingShingle |
Jacobian Conjecture Minimal counterexample Valqui, C. Guccione, J.A. Guccione, J.J. On the shape of possible counterexamples to the Jacobian Conjecture |
topic_facet |
Jacobian Conjecture Minimal counterexample |
description |
We improve the algebraic methods of Abhyankar for the Jacobian Conjecture in dimension two and describe the shape of possible counterexamples. We give an elementary proof of the result of Heitmann in [5], which states that gcd(deg(P),deg(Q))≥16 for any counterexample (P,Q). We also prove that gcd(deg(P),deg(Q))≠2p for any prime p. © 2016 Elsevier Inc. |
format |
JOUR |
author |
Valqui, C. Guccione, J.A. Guccione, J.J. |
author_facet |
Valqui, C. Guccione, J.A. Guccione, J.J. |
author_sort |
Valqui, C. |
title |
On the shape of possible counterexamples to the Jacobian Conjecture |
title_short |
On the shape of possible counterexamples to the Jacobian Conjecture |
title_full |
On the shape of possible counterexamples to the Jacobian Conjecture |
title_fullStr |
On the shape of possible counterexamples to the Jacobian Conjecture |
title_full_unstemmed |
On the shape of possible counterexamples to the Jacobian Conjecture |
title_sort |
on the shape of possible counterexamples to the jacobian conjecture |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v471_n_p13_Valqui |
work_keys_str_mv |
AT valquic ontheshapeofpossiblecounterexamplestothejacobianconjecture AT guccioneja ontheshapeofpossiblecounterexamplestothejacobianconjecture AT guccionejj ontheshapeofpossiblecounterexamplestothejacobianconjecture |
_version_ |
1807321338591838208 |