On the number of sets definable by polynomials
We show that the known algorithms used to re-write any first order quantifier-free formula over an algebraically closed field into its normal disjunctive form are essentially optimal. This result follows from an estimate of the number of sets definable by equalities and inequalities of fixed polynom...
Guardado en:
Autores principales: | Jeronimo, G., Sabia, J. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v227_n2_p633_Jeronimo |
Aporte de: |
Ejemplares similares
-
On the number of sets definable by polynomials
Publicado: (2000) -
Affine solution sets of sparse polynomial systems
por: Herrero, M.I., et al. -
Elimination for Generic Sparse Polynomial Systems
por: Herrero, M.I., et al. -
Elimination for Generic Sparse Polynomial Systems
por: Herrero, M.I., et al. -
Elimination for Generic Sparse Polynomial Systems
por: Herrero, María Isabel, et al.
Publicado: (2014)