On a special case of Watkins’ conjecture

Watkins’ conjecture asserts that for a rational elliptic curve E the degree of the modular parametrization is divisible by 2r, where r is the rank of E. In this paper, we prove that if the modular degree is odd, then E has rank zero. Moreover, we prove that the conjecture holds for all rank two rati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kazalicki, M., Kohen, D.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v146_n2_p541_Kazalicki
Aporte de:

Ejemplares similares