Protocol: Fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato

Background: Searching thoroughly for plant cis-elements corresponding to transcription factors is worthwhile to reveal novel gene activation cascades. At the same time, a great deal of research is currently focused on epigenetic events in plants. A widely used method serving both purposes is chromat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ricardi, M.M., González, R.M., Iusem, N.D.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_17464811_v6_n1_p_Ricardi
Aporte de:
Descripción
Sumario:Background: Searching thoroughly for plant cis-elements corresponding to transcription factors is worthwhile to reveal novel gene activation cascades. At the same time, a great deal of research is currently focused on epigenetic events in plants. A widely used method serving both purposes is chromatin immunoprecipitation, which was developed for Arabidopsis and other plants but is not yet operational for tomato (Solanum lycopersicum), a model plant species for a group of economically important crops.Results: We developed a chromatin immunoprecipitation protocol suitable for tomato by adjusting the parameters to optimise in vivo crosslinking, purification of nuclei, chromatin extraction, DNA shearing and precipitate analysis using real-time PCR. Results were obtained with two different antibodies, five control loci and two normalisation criteria.Conclusion: Here we provide a chromatin immunoprecipitation procedure for tomato leaves that could be combined with high-throughput sequencing to generate a detailed map of epigenetic modifications or genome-wide nucleosome positioning data. © 2010 Ricardi et al; licensee BioMed Central Ltd.